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Abstract—Style and emotional expressiveness are essential
aspects of virtual character computer animation. For a virtual
character to display different emotions, motion capture data
conveying each desired style has to be recorded, even if the
baseline motion is the same. Animators then have to refine and
conjoin each recording in order to create the final animations
making it a timely and costly process. Although there have been
efforts made into the automatic generation of motions through
Deep Reinforcement Learning techniques, the problem persists
that, for each new desired emotion, reference data displaying
said emotion has to be readily available and a new motion has
to be learned from scratch. By combining Machine Learning
with Emotion Analysis - in particular Laban Movement Analysis
and the Pleasure, Arousal, Dominance Emotion State Model - we
have developed a system that is capable of not only identifying the
perceived emotion of virtual character locomotion animations but
that also allows users to alter the character’s expressed emotion
in real time and without the need of additional data.

Index Terms—computer animation, machine learning, kine-
matic models, physics-based models, sentiment analysis, motion
synthesis

I. INTRODUCTION

Conventionally, 3D computer character animation is created
by professional human artists who manually tweak a given
character’s body in key frames and interpolate between them.
This process is commonly aided by the usage of motion
capture data (mocap). These consist in recordings of human
actors done in a way that their motions can be directly applied
to a virtual character. This data, when available, can be used
as the basis for the animation and heavily aids the artist in
speeding up the animation process.

Physics-based character animation generation has been
growing in popularity due to its ability to synthesize realistic
and natural-looking motions using only reference mocap files,
without the need of manual animation work. Recent advance-
ments made in Deep Reinforcement Learning (DRL) algo-
rithms have allowed for the construction of such systems [9],
[13], [15], able to successfully learn and reproduce physically
accurate motor skills in a plethora of motions such as dances,
locomotion and other such body gymnastics.

However, one problem both these systems and traditional
mocap driven animation struggle with is having the character
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Fig. 1. The proposed system showcasing a reference baseline motion (right)
and a physics-enabled policy-controlled character (left) whose movement has
been altered to showcase the desired emotion “Sad”.

express different emotions using the same motion. Styles and
emotions are an important aspect of generating realistic, be-
lievable virtual characters. Animators are usually tasked with
not only creating the baseline movement for the animation,
but also controlling the character’s body language in order to
convey different emotional states, feelings and styles. Such
expressiveness is paramount to properly conveying a story,
setting a scene’s tone and making it so the virtual character
has an actual impact on the viewer.

The problem then lies in the fact that, should animators
want their character to convey different emotions, they would
need to record actors portraying the same motion in all desired
emotions. For example, if an animator wants a character to
walk sadly, happily and angrily, they need to gather mocap data
of the same walking animation but with the actor conveying
sadness, happiness and anger. They then need to generate an
entirely new animation for each emotion, either by training a
motion learning system or through manual computer anima-
tion. This process has to be repeated each time the animator
wishes for their character to express a new emotion - if they
now want their character to convey the feeling of pride they
need to once again get more mocap data and generate a whole
new animation to add to the stack.

We propose a novel solution to this problem that combines
the usage of Machine Learning (ML) models and Laban



Movement Analysis (LMA) [7] for emotional classification
and motion generation. Changes to the motion are applied in
real time and get computed after a new desired emotion is
specified. New poses are synthesized for the character at each
frame, forcing the character to express the desired emotion,
whilst still maintaining the baseline motion and movement.

The developed framework, shown in Figure 1, focuses on
locomotive motions - walking, running and dashing - and
allows users to edit the virtual character’s expressed style and
emotion in real-time, any number of times, without slowing
down or stopping the animation and without the need for any
additional mocap data or motion learning training. Moreover,
our system works not only with Kinematic mocap data but
also automatically generated Physics-Enabled Policy based
character controllers learnt using the Spacetime Bounds DRL
system [13].

II. RELATED WORK

A. Motion Learning

There have been numerous efforts poured into creating
virtual character controllers that can automatically learn how
to mimic and perform animations without the need of human
animators. Earlier approaches focused on purely data-driven
Kinematic Models generated by neural networks [11], [20].
More robust solutions based around Physics-Based models [2],
[6], [15], [24] offered the guarantee of generating physically
accurate motions. The state of the art now lies in the usage
of Reinforcement Learning methodologies for the genera-
tion of physics-based character controllers. Systems such as
DeepMimic [15] proved the efficacy of such techniques in
creating policy-based character controllers able to imitate
motions, provided via motion capture data. SpacetimeBounds
[13] further iterated on the ideas of DeepMimic through the
introduction of loose space-time constraint used to limit the
training search space in a fashion akin to early termination.
These restrictions bind the character’s states in space and time
during the reinforcement learning training process based only
on the given reference motion. Additionally, by loosening or
tightening the spacetime bounds, this system allows users to
indirectly curate the look and feel of the outcome motion,
hence providing a manner of style exploration.

An issue with SpacetimeBound’s stylistic exploration is that
after the character controller policy has been learned, there is
no way to further edit the character’s style or emotion. This
issue is prevalent in all of the aforementioned systems which
focused on learning to mimic the given references rather than
empowering the character with the capability of expressing the
same motion in a wide array of emotions. Our work aims to
fix this issue by allowing users to edit and swap the learned
animation’s expressed emotion in real time, without the need
of additional references or further training.

B. Motion Analysis and Tweaking

Emotional classification involves manners of distinguishing
emotions from one another. There are two main approaches to
emotion classification - one in which emotions are considered

discrete, meaning humans have a preset array of emotions that
they discretely swap between [10], [21], and one in which
emotions are defined in accordance to continuous values in
dimensional axis, blending into each other smoothly [14],
[19]. Focusing on the latter, there are several dimensional
models that attempt to place emotions on a 2D or 3D scale.
Russel’s Circumplex Model (RCM) [19] is one such model
which maps emotions into a 2 dimensional space consisting
of an Arousal and Valence axis, describing emotions alongside
a Deactivated/Alert and a Pleasure/Displeasure continuum.
The Pleasure, Arousal, Dominance Emotional State Model
(PAD) [14] is an extension of the ideas of RCM, adding a
new emotional dimension - Dominance. This new axis allows
for a more granular specification of the character’s emotion,
accounting for the emotional impact of external forces upon
the actor’s feelings.

Motion analysis focuses on parameterizing and describing a
character’s movements. Laban Movement Analysis (LMA) is
one such motion analysis methodology capable of describing
human movements by drawing inspiration from fields of
anatomy, kinematics and psychology [3], [7]. LMA breaks
down movement description into 4 categories - Body, Effort,
Shape and Space - each possessing different properties. Recent
efforts have been able to utilize LMA features to accurately
assess the discrete emotion of different gaits by further split-
ting the LMA features into Posture, and Movement features
[17].

A noteworthy approach to motion analysis and tweaking
is the one proposed by Aristidou et al. [3]. These authors
developed a system capable of extracting a motion capture’s
select set of LMA features and mapped them into the RCM
emotional coordinates through Linear Regression. They also
managed to achieve the inverse process of mapping 2D emo-
tional coordinates back into a set of LMA features. These
generated LMA features were then fed into a Heuristic-Rules
based motion synthesis algorithm, transforming them into joint
rotation changes that could then be applied to the virtual
character using Inverse Kinematics. Our system draws a lot
of inspiration from this one but presents several key changes.
Firstly, instead of focusing on contemporary dance motions our
efforts diverged towards locomotion animations. Rather than
using the RCM model we utilized the more descriptive PAD
model [14]. Our selected set of LMA features also differs,
taking notes from the efforts of Randhavane et al. [17] of gait
emotional identification using LMA. Furthermore we utilized
Gradient Tree Boosting Regression for LMA to PAD mapping
and proposed the usage of both Gradient Tree Boosting Re-
gressors and an Autoencoder to reduce the dimensionality of
LMA features when mapping from PAD to LMA. Finally, our
system allows for the emotional identification and tweaking of
not only mocap driven kinematic controllers, but also policy-
controlled physics-based characters.

III. EMOTIONALLY EXPRESSIVE MOTION CONTROLLER

The developed system can be subdivided into several core
sub-modules. Figure 2 illustrates the connections between the



Fig. 2. An overview of the system’s architecture. For Emotion Classification, the system begins by computing a set of LMA features from the frame data
extracted from the character. These features are then fed to the Emotion Classifier module which outputs the predicted PAD coordinates. When new desired
PAD coordinates are specified they first get converted into a set of LMA Features. This is then given to the Motion Synthesis module which computes new
desired joint positions that are then used by the Inverse Kinematics Solver to generate the character’s new pose.

modules and the system’s overall architecture. At the core of
the system lies a character controller used to make a char-
acter execute the intended baseline animation. This controller
can either be Kinematic, driven directly by provided mocap,
or Policy-based Physics-Enabled, learned using Spacetime
Bounds [13]. For Emotion Classification, the system begins
by computing a set of LMA features from the frame data
extracted from the character. These features are then given to
the Emotion Classifier module which outputs the predicted
PAD coordinates. Emotional Motion Synthesis is triggered
whenever new desired PAD coordinates are specified. Firstly
the system converts the new coordinates into a set of LMA
features. These features, alongside all of the baseline anima-
tion’s LMA features, are then given to the Motion Synthesis
module which computes new desired joint positions. The joint
positions are then provided to the Inverse Kinematics Solver
which uses them, alongside the character’s current pose, to
generate a new pose.

Following is a brief introduction to the system’s main
modules.

A. LMA Feature Extraction

This module receives Frame Data in the form of joint
positions and transform them into a set of LMA Features.

B. Emotion Classifier

The Emotion Classifier module is equipped with our pre-
trained LMA to PAD regression models. This module receives
the current motion’s LMA Features, standardizes them and
feeds them to the LMA-PAD models. The resulting output is
the predicted emotional PAD coordinates for the current LMA
feature set.

C. PAD To LMA Mapper

This module is equipped with trained PAD to LMA machine
learning models and is responsible for converting the input
PAD coordinates into a set of corresponding LMA feature
values.

D. Motion Synthesis

The Motion Synthesis module receives both the character’s
current and the generated LMA feature sets. Using these it
then computes new desired core joints positions using a set of
heuristic rules.

E. Inverse Kinematics Solver

This module takes the generated core joints positions along-
side the character’s current pose and uses Inverse Kinematics
to compute a new pose. This pose aims to place the character’s
joints as close as possible to their desired positions.

IV. IMPLEMENTATION

A. Dataset

We utilized the Bandai-Namco-Research-Motion Dataset
[4]. This data consists of Bounding Volume Hierarchy (BVH)
files describing a wide array of motions such as walking,
running, kicks and dances. Each animation was performed in
order to convey a specific style such as active, masculine or
proud. Only the Walking, Running and Dashing animations
were utilized and converted from BVH into a Deepmimic
friendly-format [12]. Each style was also mapped into a spe-
cific emotion with corresponding PAD emotional coordinates
[8]. A total of 468 different animations in 10 emotional
styles - Neutral, Tired, Exhausted, Angry, Happy, Sad, Proud,
Confident, Afraid and Active - were obtained, each running
at 30 frames per second. Figure 3 showcases a sample of 4
motions from our dataset displaying the Afraid, Happy, Sad
and Proud emotions, alongside their corresponding Pleasure,
Arousal and Dominance coordinate values.

Upon labeling each of our animation files their LMA
Features were extracted. First, each frame’s pose information
(joint positions, velocities and rotations) gets stored. At each
keyframe - every 5th frame - the stored data is then used to
compute the LMA features corresponding to these past frames.
Each set is composed of 25 different LMA features as
specified in Table I. A total of 78551 LMA Feature Sets were
retrieved, each labeled according to their PAD coordinates.



Fig. 3. Example of 4 motions from our dataset expressing 4 different
emotions.

TABLE I
OUR SET OF 25 LMA FEATURES

LMA Feature f LMA Category
Max Hand Distance f1 Body
Avg. Left Hand - Hip Distance f2 Body
Avg. Right Hand - Hip Distance f3 Body
Max Stride Length f4 Body
Avg. Left Hand - Chest Distance f5 Body
Avg. Right Hand - Chest Distance f6 Body
Avg. Left Elbow - Hip Distance f7 Body
Avg. Right Elbow - Hip Distance f8 Body
Avg. Chest - Pelvis Distance f9 Body
Avg. Neck - Chest Distance f10 Body
Avg. Total Body Volume f11 Shape
Avg. Lower Body Volume f12 Shape
Avg. Upper Body Volume f13 Shape
Avg. Area between Hands and Neck f14 Shape
Avg. Area between Feet and Hip f15 Shape
Left Hand Speed f16 Effort
Right Hand Speed f17 Effort
Left Foot Speed f18 Effort
Right Foot Speed f19 Effort
Neck Speed f20 Effort
Left Hand Acceleration Magnitude f21 Effort
Right Hand Acceleration Magnitude f22 Effort
Left Foot Acceleration Magnitude f23 Effort
Right Foot Acceleration Magnitude f24 Effort
Neck Acceleration Magnitude f25 Effort

B. Emotional Classification

To classify the motion’s perceived emotion a set of Gradient
Tree Boosting Regressors were trained to map LMA Features
into PAD coordinates. We used 3 regressors - one for each
emotional coordinate - that took as input our set of 25
LMA Features and outputting the corresponding predicted
coordinate. Figure 4 illustrates this process. Regression was
chosen over classification due to the fact that the PAD Model
identifies emotions according to their Pleasure, Arousal and
Dominance values which are continuous.

The models were built using XGBoost [5]. Our dataset
of LMA Features was first standardized and then shuffled
and split into a train and test set. 80% of data was used
for Training (62841 samples) and 20% was used for Testing
(15710 samples). Hyper parameter tuning was done individu-
ally for each of the 3 regressors using Random Search 10-Fold
Cross Validation. The final models managed to accomplish a
mean absolute error of 0.02, 0.06 and 0.03 using the Test
set for the Pleasure, Arousal and Dominance coordinates

Fig. 4. The process of using our Gradient Boosting Regressors to predict the
PAD coordinates of a set of LMA features extracted from a motion

correspondingly, with values ranging between [−1.0, 1.0]. The
predicted emotional coordinates of 1000 random samples from
our Test set are shown in Figure 5. As can be seen, some
predictions do stray slightly from their real coordinates, but
they nevertheless fall into well defined emotion clusters and
seldom stray from the correct octant in the 3D model.

It should be noted that mocap data consists of high-
frequency “continuous” time series, in the sense that frames
from the same animation are neighbours of each other and
may present some form of sequential similarities. This same
line of thought can be extended to our LMA Feature dataset.
This may lead to an issue where, when data is randomly split
as aforementioned, the train and test sets end up containing
neighbouring LMA feature sets belonging to the same anima-
tion. This in turn could mean that the final results obtained
over the test set could be good, solemnly because the models
are overfitting to the train data, and the test set is comprised
of similar features. To counteract this, and to make sure that
the PAD regressors were not performing well simply due to

Fig. 5. Prediction results of samples from our Test set. Each sample is
coloured according to their real emotion.



dataset overfitting, we experimented with splitting animations
directly into either the train and test set, rather than doing the
aforementioned LMA Feature-level split. This means that the
LMA Feature sets in the train set come from entirely different
animations from those in the test set, effectively removing the
“frame neighbour similarity” issue. The regressors were then
trained and tested using these new dataset splits. Effectively,
there was no apparent major performance hitThe reason as
to why the sequential similarity nature of frame data seems
to be a non-issue may be due to the fact that our models
are not being trained with frame data directly, but instead
using LMA Features extracted every fifth frame. As such, two
neighbouring LMA features represent a higher time difference.

Using the trained predictors it is then possible to identify
a given motion’s perceived emotion in real time. During an
animation’s playtime LMA Features are extracted at every
keyframe. After a list of 10 LMA Feature sets has been
stored a new multithreaded process is started. This process
standardizes the features and uses the predictors to compute
the Pleasure, Arousal and Dominance coordinates for each of
the sets. Each coordinate’s predictions is then averaged, stored
and output. At the end of the animation the final emotional
prediction gets computed using a weighted average of all past
predictions. For this average, the highest absolute recorded
value for each emotional dimension is given a slightly higher
weight. This stems from the assumption that the intensity
of the intended emotional expression can vary throughout
the course of the animation, but it will at some point reach
a maximum absolute value, indicative of the feeling the
character is aiming to express.

C. LMA Feature Generation

After training the LMA to PAD models, they were then
used to generate a new dataset. This dataset stored our sets
of LMA Features as target variables and their predicted PAD
coordinates as inputs. New models capable of synthesizing
new LMA Feature values from given PAD coordinates were
trained using this data. First, an Autoencoder was created to
convert the 25 LMA Features into a 5 dimensional Latent
Feature space - l1, l2, l3, l4, l5 - and vice-versa. This was
done to decrease the overall complexity of the PAD-LMA
mapping problem [22], [23]. A set of 5 Gradient Tree Boosting
regressors was then trained to map PAD coordinates into
each of these Latent Features. Figure 6 shows the process
of generating new LMA values. The PAD coordinates are
converted into Latent Features which in turn get decoded by
the AutoEncoder into a set of corresponding LMA Features.

The Autoencoder Neural Network was built with the archi-
tecture illustrated in Figure 7. After training for 1024 epochs,
it accomplished a mean absolute reconstruction error of 0.17
on the test set. We then generated a new labeled dataset using
our PAD coordinates as input and the latent features created
by the Autoencoder as output. This new dataset was used to
train 5 regressors built using XGBoost in a manner similar
to the predictors for Emotional Classification. Through this
process we achieved an overall mean absolute error of 0.19

Fig. 6. Generation of LMA Features from PAD coordinates.

Fig. 7. The Autoencoder architecture.

between the predicted emotional coordinates of the generated
LMA Feature set and the original ones, with Pleasure an error
of 0.19, Arousal 0.24 and Dominance 0.14.

D. Motion Synthesis

Given a new set of desired PAD coordinates it is possible
to synthesize and apply motion changes to the character in
real time. This editing can be performed multiple times and is
done in a multithreaded process so as to avoid interrupting or
slowing down the current animation’s display. We designed
a set of 6 Heuristic Rules, each responsible for tweaking
the position or rotation of one of our core joints - Hips,
Chest, Hands, Elbows, Feet and Neck. Changing upper body
joints was the main focus as these tend to have the most
impact on the conveyed emotion, while lower body joints are
more important for balance and motion integrity rather than
expression [3]. A subset of our rules can be seen in Figure 8.
Each of these rules works by taking into account the current
position or rotation of the joint its trying to change and one
or more associated coefficients.

Whenever a new set of PAD coordinates is provided, new
values for our set of LMA Features are created. These gen-
erated LMA Features. together with the animation’s recorded
LMA features, are utilized to compute the coefficients used
in our heuristic rules. Each rule is associated with a different
subset of LMA Features and its associated coefficients are
computed by finding the value that minimizes the distance



Fig. 8. 2 of our 6 Motion Synthesis rules.

between the corresponding subset of recorded and generated
LMA features. For example, rule g1 aims to modify the
position of our hips joint. To compute c1, the coefficient
associated with rule g1, we find the value that minimizes the
difference between the values of all recorded and generated
LMA features that pertain to the hips. Looking at Figure I,
for coefficient c1, these features include f9, f11, f12, f13 and
f15. All coefficients are initialized at 1.0 and are minimized
using Powell’s method [16].

After computing the coefficients for each rule, the system
then synthesizes the changes to the pose necessary to convey
the desired emotion. If the character is being controlled by a
learnt policy that means all poses are newly created at each
frame. As such to get each frame’s baseline pose we wait for
it to be generated and interject it just before it gets applied to
the character.

The heuristic rules are given the currently extracted pose to
generate new core joint positions. These positions get handed
to the Inverse Kinematics module to compute a new pose
that attempts to get the core joints as close as possible to
their desired synthesized positions, while still respecting the
character’s body restraints to avoid unnatural postures. The
generated pose is then applied to the character, replacing
the baseline pose and thus altering the character’s emotional
expression.

V. RESULTS

Our system was built in Python 3.8, using PyBullet [1]
as the underlying engine. All machine learning models were
trained offline in a dedicated external server. Emotional Clas-
sification and Motion Synthesis is done in multithreaded
processes and takes, on average, less than 3 seconds to
execute and apply, running in real time. The system’s test
results, project code and other resources, were made publicly
available1.

1https://heroufenix.github.io/expressive animations web/

To illustrate the functioning of our Emotionally Expressive
Motion Controller system the Graphical User Interface (GUI)
shown in Figure 9 was developed. Users are shown a window
with the virtual character performing the specified motion.
They can pan the camera around and zoom in and out.
If the user specified a policy-based character controller an
additional character is also placed alongside the main one,
showcasing the reference motion the policy learned from. The
GUI shows the current results of the Emotional Classification
by displaying the predicted Pleasure, Arousal and Dominance
coordinates. To specify new desired PAD coordinates the
user can freely tweak the corresponding sliders or select one
of the available presets. Hitting the confirm button triggers
the Motion Synthesis with the coordinates currently on the
sliders. Aside from this, system state information is also show-
cased. Specifically, the GUI indicates whether the animation
is running, has looped or has stopped, whether Emotional
Classification is still ongoing or has finished and whether a
new motion is being synthesized or not.

Triggering the Motion Synthesis module will alter the char-
acter’s motion in real time. Figure 10 showcases 4 generated
motions synthesized from the same baseline animation. The
“Confident” character, for example, highly elevates their shoul-
ders, widens their upper body volume and exposes their neck,
while the “Afraid” character raises their arms to protect their
torso and slumps down, reducing its body volume. Our syn-
thesis works best when applied to a neutral baseline movement
but it nevertheless works with different base emotions. Both
our emotional classification and our synthesis were trained and
designed for locomotion-type motions, specifically walking
and running. Whilst they can still be applied to other types
of animations without additional changes, the results won’t be
as consistent. Motion Synthesis seems to suffer the most from
this in the quality of the generated motions, mostly due to
the fact that our heuristic rules were purposefully tweaked for
locomotions. The Emotional Classification also suffers in the
accuracy of its predictions but still manages to, more often

Fig. 9. Our system displaying motion capture data and our Graphical User
Interface showing the current Emotional Prediction, system state and Motion
Synthesis controls.



Fig. 10. Four motions synthesized using the same baseline motion and 4
different desired emotions.

than not, predict the correct emotional octant.

A. User Tests

The performance of our Emotionally Expressive Motion
Synthesis was evaluated through a set of user tests. These
tests aimed to compare the emotional expressiveness of the
generated motions versus the ones from the mocap dataset,
which were performed by professional actors to convey a
specific emotional style. A set of video clips was recorded
using our motion generation over both a Kinematic and a
Policy-Controlled physics enabled character. The generated
motions were created by altering the emotion of a baseline
walking animation from Neutral into Sad, Confident, Tired,
Afraid, Angry and Happy. The intent was to check whether the
generated motions managed to convey their intended emotions
as well as the reference mocap. Two tests were conducted with
40 anonymous participants each. For each test we utilized a
form containing the recorded clips mixed together in a random
order.

For the first task, participants were asked to visualize each
clip and select which emotion they thought the character was
trying to express from a given list. This was dubbed the
“Emotion Identification” Task. The results were gathered in
the clustered bar charts shown in Figure 11. Looking at the
reference mocap, most participants managed to correctly iden-
tify the emotions “Afraid”, “Confident”, “Happy” and “Tired”,
although not by a vast majority in most cases. Compared to
mocap, the generated motions applied to a Kinematic character
managed to output better results, with the correct emotions
being the most selected in all cases but “Tired” which nearly
tied with “Sad”. As for the generated motions applied to a
Policy-based controller, the best performing emotions were
“Confident”, “Sad” and “Tired” with the remaining ones being
in second or third place. In general, both generated models had

Fig. 11. Clustered bar charts showing the count of answers compared to the
correct emotion for each type of clip.

similar performances comparatively to each other and to the
reference mocap data.

Certain emotions have intrinsic ambiguity when lacking
context which might explain some of the results obtained on
the first test [18]. To counteract this, a second task, named
“Primed Emotion Agreement Task”, was conducted where
participants were explicitly told which emotion the character
was trying to express. They were then asked to rate how much
they agreed the character was expressing said emotion using
a Likert scale from 1 (Completely Disagree) to 5 (Completely
Agree). A Friedman test done for each emotion showed
that there was no statistically significant difference between
our video clip types for “Afraid” (p = 0.519), “Confident”



(p = 0.121) and “Angry” (p = 0.657). An additional Wilcoxon
Signed Rank Test on the remaining emotions - “Sad”, “Tired”,
“Happy” - confirmed, for all cases, a statistically significant
difference between the generated motions and the reference
mocap (p < 0.001). Figure 12 exemplifies the dispersion of
answers per type of clip for the emotions where a statistically
significant difference between the type of clip was found.
For the Sad and Tired emotions, both types of generation
actually outperform the reference mocap meaning that for
these particular emotions, our generated motions are more
easily identified as their corresponding emotions. The “Happy”
emotion was the only one in which mocap outperformed
our generated motions, although they still had decent results
with most participants agreeing that the character was in fact
exhibiting “Happiness”.

Fig. 12. Boxplot charts showing the value distribution for the emotions “Sad”,
“Tired” and “Happy” in regards to each type of clip.

Looking at the results of both tests, participants, for the
most part, managed to correctly identify and tended to agree

with the emotions that the generated motions were trying to
convey. Moreover, certain emotions were more easily identi-
fied comparatively to the reference mocap. This showcases the
efficacy of our system, as it proves that we can achieve results
with similar emotionally expressiveness to professional-grade
mocap without the need and costs of recording several actors
performing each of the desired emotions.

VI. CONCLUSION

We have showcased our system for Emotional Classification
and Emotionally Expressive Motion Control of Locomotion
animations. We have proven that, through the usage of se-
lect LMA features we can accurately identify a character’s
expressed emotion in the 3D PAD Emotional space. We also
managed to create a methodology for generating a new set
of LMA Features with desired emotional values and use it to
alter a character’s motion in real time and without requiring
any additional data or training. Furthermore, our system works
not only on Kinematic controllers driven by mocap, but also
on physics-enabled characters controlled by learnt policies.

Our system’s value lies in the fact that we can alter a
motion’s emotion in real time without the need for any further
data or training. Our system bypasses the need of having
to record a mocap or train a character controller policy for
each emotion that the character is meant to express over
the same motion by managing to change the character’s
emotion instantaneously while its still performing the baseline
movement. The fact that the system can be used interactively
and that changes and predictions are output in real time means
that users can be used not only to create new animations
that could then be extracted and used just like conventionally
generated ones, but could also be integrated with applications
that require modifications to be done during run time. To
showcase our emotional classification and expressive motion
editing we also designed an easy to use and interactable
GUI that allows users to alter a baseline motion’s emotion
by specifying new desired PAD coordinates in real time and
without the need for any specific domain knowledge. It should
be noted, however, that this interface serves only to illustrate
the underlying framework’s capabilities, which could be used
independently in professional applications.

In terms of future improvements, the dataset we used
grouped animations into preset styles rather than emotional
coordinates. As such, all animations that aimed to express
the same emotion were labeled with the exact same Pleasure,
Arousal and Dominance values. In reality not all animations
with the same emotion express it with the same intensity,
and the emotional coordinate values are subject to change
even during the course of the same animation. It would be
interesting to explore our approaches using an enriched dataset
that further split each animation’s labels into chunks, adding
more granularity to the emotional expression of the data. In-
creasing the overall animation and emotional variety, alongside
further tweaking our motion generation heuristic rules may
also improve our system’s performance on non-locomotion
animations. It would also be worth exploring different avenues



for LMA Feature generation. More specifically, we believe that
Generative Adversarial Networks or Variational AutoEncoders
could have the baseline generative capabilities to accomplish
the feature generation task [17] and possibly outperform our
own PAD to LMA mapping methodologies.
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