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Equipping a virtual character with the capability to express a wide array of emotions is paramount to
making that character seem believable, realistic and for it to provoke, in the viewer, the artist’s intended
impact. This emotional expression can be done in a multitude of ways, but one of the most habitual
is through nuances in the character’s body language. This can be accomplished by producing several
variants of the same baseline animation for each different emotion. A problem with this methodology,
however, is that it is not scalable. As the number of motion-emotion pairings increases, so does the
amount of animations that must be created, either manually, or through the usage of new systems
for automatic animation generation. Furthermore, reference motion capture data of an actor conveying
the same movements in each desired emotion must be readily available. We propose a solution to this
problem in the form of a tool that is not only capable of identifying the perceived emotion of virtual
character locomotion animations but that can also synthesize and apply the required bodily changes in
order to alter the character’s expressed emotion, in real time.
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1. Introduction

Conventionally, 3D computer character animation is

created by professional human artists who manually

tweak a given character’s body in key frames and in-

terpolate between them. This process is commonly

aided by the usage of motion capture data (mocap).

These consist in recordings of human actors done in

a way that their motions can be directly applied to a

virtual character. This data, when available, can be

used as the basis for the animation and heavily aids

the artist in speeding up the animation process. Fur-

thermore, recent advancements made in Deep Rein-

forcement Learning (DRL) algorithms have allowed

for the construction of systems that can automati-

cally generate new physics-enabled character anima-

tions1,2 by training a character controller policy able

to reproduce a provided reference motion capture.

One thing both these systems and traditional
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mocap driven animation struggle with is having the

character express different emotions using the same

motion. Emotions are an important aspect of gen-

erating realistic, believable virtual characters. Ani-

mators are usually tasked with not only creating the

baseline movement for the animation, but also con-

trolling the character’s body language in order to

convey different emotional states, feelings and styles.

Such expressiveness is paramount to properly con-

veying a story, setting a scene’s tone and making it

so the virtual character has an actual impact on the

viewer. The problem then lies in the fact that for each

motion-emotion pairing the character should be able

to express, a new animation has to be generated en-

tirely from scratch, either by training a motion learn-

ing system or through manual computer animation.

This process is timely, costly and does not scale well

as the scope of projects increases.

We propose a novel solution to this problem that

combines the usage of Machine Learning (ML) mod-

els and Laban Movement Analysis (LMA)3 for emo-

tional classification and motion generation. Changes

to the motion are applied in real time and get com-

puted after a new desired emotion is specified. New

poses are synthesized for the character at each frame,

forcing the character to express the desired emo-

tion, whilst still maintaining the baseline motion and

movement. The developed framework, shown in Fig-

ure 1, focuses on locomotive motions - walking, run-

ning and dashing - and allows users to edit the vir-

tual character’s expressed style and emotion in real-

time, any number of times, without slowing down

or stopping the animation and without the need for

any additional mocap data or motion learning train-

ing. Moreover, our system works not only with Kine-

matic mocap data but also automatically generated

Physics-Enabled Policy based character controllers

learnt using the Spacetime Bounds DRL system.2

Fig. 1. A reference motion (right) and a character (left)
whose movement have been altered to showcase “Sad”.

2. Related Work

2.1. Motion Learning

There have been numerous efforts poured into cre-

ating virtual character controllers that can automat-

ically learn how to mimic and perform animations

without the need of human animators. Earlier ap-

proaches focused on purely data-driven Kinematic

Models generated by neural networks.4 More robust

solutions based around Physics-Based models5,6 of-

fered the guarantee of generating physically accurate

motions. The state of the art now lies in the usage of

Reinforcement Learning methodologies for the gener-

ation of physics-based character controllers. Systems

such as DeepMimic1 proved the efficacy of such

techniques in creating policy-based character con-

trollers able to imitate motions, provided via motion

capture data. SpacetimeBounds2 further iterated

on the ideas of DeepMimic through the introduction

of loose space-time constraint used to limit the train-

ing search space in a fashion akin to early termina-

tion. These restrictions bind the character’s states

in space and time during the reinforcement learning

training process based only on the given reference

motion. Additionally, by loosening or tightening the

spacetime bounds, this system allows users to indi-

rectly curate the look and feel of the outcome mo-

tion, hence providing a manner of style exploration.

An issue with SpacetimeBound’s stylistic exploration

is that after the character controller policy has been

learned, there is no way to further edit the charac-

ter’s style or emotion. This issue is prevalent in all of

the aforementioned systems which focused on learn-

ing to mimic the given references rather than empow-

ering the character with the capability of expressing

the same motion in a wide array of emotions. Our

work aims to fix this issue by allowing users to edit

and swap the learned animation’s expressed emotion

in real time, without the need of additional references

or further training.

2.2. Motion Analysis and Tweaking

Emotional classification involves manners of distin-

guishing emotions from one another. There are two

main approaches to emotion classification - one in

which emotions are considered discrete, meaning hu-

mans have a preset array of emotions that they dis-

cretely swap between,7 and one in which emotions

are defined in accordance to continuous values in di-
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mensional axis, blending into each other smoothly.

Focusing on the latter, there are several dimensional

models that attempt to place emotions on a 2D

or 3D scale. Russel’s Circumplex Model (RCM)8 is

one such model which maps emotions into a 2 di-

mensional space consisting of an Arousal and Va-

lence axis, describing emotions alongside a Deacti-

vated/Alert and a Pleasure/Displeasure continuum.

The Pleasure, Arousal, Dominance Emotional

State Model (PAD)9 is an extension of the ideas

of RCM, adding a new emotional dimension - Domi-

nance. This new axis allows for a more granular spec-

ification of the character’s emotion, accounting for

the emotional impact of external forces upon the ac-

tor’s feelings.

Motion analysis focuses on parameterizing and

describing a character’s movements. Laban Move-

ment Analysis (LMA) is one such motion analy-

sis methodology capable of describing human move-

ments by drawing inspiration from fields of anatomy,

kinematics and psychology.3 LMA breaks down

movement description into 4 categories - Body, Ef-

fort, Shape and Space - each possessing different

properties. Recent efforts have been able to utilize

LMA features to accurately assess the discrete emo-

tion of different gaits by further splitting the LMA

features into Posture, and Movement features.10 A

noteworthy approach to motion analysis and tweak-

ing is the one proposed by Aristidou et al.11 These

authors developed a system capable of extracting

a motion capture’s select set of LMA features and

mapped them into the RCM emotional coordinates

through Linear Regression. They also managed to

achieve the inverse process of mapping 2D emo-

tional coordinates back into a set of LMA features.

These generated LMA features were then fed into

a Heuristic-Rules based motion synthesis algorithm,

transforming them into joint rotation changes that

could then be applied to the virtual character using

Inverse Kinematics.

3. Emotionally Expressive Motion
Controller

The Emotionally Expressive Motion Controller

(EEMC) system can be subdivided into several core

sub modules. Figure 2 illustrates the connections be-

tween the modules and the system’s overall archi-

tecture. At the core of the system lies a character

controller used to make a character execute the in-

tended baseline animation. This controller can either

be Kinematic, driven directly by provided mocap, or

Policy-Based Physics-Enabled learned, for instance,

using the Spacetime Bounds2 or DeepMimic1 sys-

tem. For Emotion Classification, the system begins

by computing a set of LMA features from the frame

data extracted from the character. These features are

then given to the Emotion Classifier module which,

being empowered with a set of ML models, outputs

the predicted PAD coordinates. Emotional Motion

Synthesis is triggered whenever new desired PAD co-

ordinates are specified. Firstly, the system converts

the new coordinates into a set of LMA features using

ML. These features, alongside all of the baseline ani-

mation’s LMA features, are then given to the Motion

Synthesis module which computes new desired joint

positions. These, plus the character’s current pose,

are then provided to the Inverse Kinematics Solver

module to generate a new pose for the character.

3.1. Dataset

The Bandai-Namco-Research Motion

Dataset12 was utilized to train each of the sys-

tem’s ML models. This data consists of Bounding

Volume Hierarchy (BVH) files describing a wide ar-

ray of motions such as walking, running, kicks and

dances running at 30 frames per second. Each ani-

mation was performed in order to convey a specific

style. Before usage, the dataset was first prepared

following the pipeline illustrated in Figure 3.

Fig. 3. The dataset preparation pipeline.

The original dataset’s labels were mapped into

corresponding emotions and PAD coordinates.13,14

The values chosen for the emotional coordinates were

inspired by previous discrete emotion to PAD map-

ping efforts11,13,14 with minor adjustments to better

fit the dataset’s animations. This resulted in 468 dif-

ferent animations in 14 emotions. Upon labeling
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Fig. 2. An overview of the Emotionally Expressive Motion Controller system, subdivided into two main subsystems -
one for Emotional Identification and one for Motion Synthesis

each of our animation files their LMA Features were

extracted. First, each frame’s pose information (joint

positions, velocities and rotations) gets stored. At

each keyframe - every 5th frame - the stored data is

then used to compute the LMA features correspond-

ing to these past frames. Each set is composed of 25

different LMA features as specified in Table 1. A

total of 78551 LMA Feature Sets were retrieved,

each labeled according to their PAD coordinates.

Table 1. Our set of 25 LMA Features

LMA Feature f LMA Category

Max Hand Distance f1 Body

Avg. Left Hand - Hip Distance f2 Body

Avg. Right Hand - Hip Distance f3 Body

Max Stride Length f4 Body

Avg. Left Hand - Chest Distance f5 Body

Avg. Right Hand - Chest Distance f6 Body

Avg. Left Elbow - Hip Distance f7 Body

Avg. Right Elbow - Hip Distance f8 Body

Avg. Chest - Pelvis Distance f9 Body

Avg. Neck - Chest Distance f10 Body

Avg. Total Body Volume f11 Shape

Avg. Lower Body Volume f12 Shape

Avg. Upper Body Volume f13 Shape

Avg. Area between Hands and Neck f14 Shape

Avg. Area between Feet and Hip f15 Shape

Left Hand Speed f16 Effort

Right Hand Speed f17 Effort

Left Foot Speed f18 Effort

Right Foot Speed f19 Effort

Neck Speed f20 Effort

Left Hand Acceleration Magnitude f21 Effort

Right Hand Acceleration Magnitude f22 Effort

Left Foot Acceleration Magnitude f23 Effort

Right Foot Acceleration Magnitude f24 Effort

Neck Acceleration Magnitude f25 Effort

3.2. Emotional Classification

To classify the motion’s perceived emotion a set of

Gradient Tree Boosting Regressors were trained to

map LMA Features into PAD coordinates. We used

3 regressors that took as input our set of 25 LMA

Features and outputting the corresponding predicted

coordinate. Figure 4 illustrates this process. Regres-

sion was chosen over classification due to the fact

that the PAD Model identifies emotions according to

their Pleasure, Arousal and Dominance values which

are continuous.

Fig. 4. LMA to PAD mapping using Gradient Tree
Boosting regressors

The models were built using XGBoost.15 Our

dataset of LMA Features was first standardized and

then shuffled and split into a train and test set. 80%

of data was used for Training (62841 samples) and

20% was used for Testing (15710 samples). Hyper

parameter tuning was done individually for each of

the 3 regressors using Random Search 10-Fold Cross

Validation. The final models managed to accomplish

a mean absolute error of 0.02, 0.06 and 0.03 using

the Test set for the Pleasure, Arousal and Domi-

nance coordinates correspondingly, with values rang-

ing between [−1.0, 1.0]. The predicted emotional co-

ordinates of 1000 random samples from our Test set
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are shown in Figure 5. As can be seen, some pre-

dictions do stray slightly from their real coordinates,

but they nevertheless fall into well defined emotion

clusters and seldom stray from the correct octant.

Fig. 5. Prediction results of samples from our Test set.
Samples are coloured according to its original emotion.

It should be noted that mocap data consists of

high-frequency “continuous” time series, in the sense

that frames from the same animation are neighbours

of each other and may present some form of sequen-

tial similarities. This same line of thought can be ex-

tended to our LMA Feature dataset. This may lead

to an issue where, when data is randomly split as

aforementioned, the train and test sets end up con-

taining neighbouring LMA feature sets belonging to

the same animation. This in turn could mean that

the final results obtained over the test set could be

good, solemnly because the models are overfitting to

the train data, and the test set is comprised of similar

features. To counteract this, and to make sure that

the PAD regressors were not performing well sim-

ply due to dataset overfitting, we experimented with

splitting animations directly into either the train and

test set, rather than doing the aforementioned LMA

Feature-level split. This means that the LMA Fea-

ture sets in the train set come from entirely different

animations from those in the test set, effectively re-

moving the “frame neighbour similarity” issue. The

regressors were then trained and tested using these

new dataset splits. Effectively, there was no appar-

ent major performance hit. The reason as to why this

seems to be a non-issue may be due to the fact that

our models are not being trained with frame data

directly, but instead using LMA Features extracted

every 5th frame.

Using the trained predictors it is then possi-

ble to identify a given motion’s perceived emotion

in real time. During an animation’s playtime LMA

Features are extracted at every keyframe. After a list

of 10 LMA Feature sets has been stored a new mul-

tithreaded process is started. This process standard-

izes the features and uses the predictors to compute

the Pleasure, Arousal and Dominance coordinates for

each of the sets. Each coordinate’s predictions is then

averaged, stored and output. At the end of the ani-

mation the final emotional prediction gets computed

using a weighted average of all past predictions. For

this average, the highest absolute recorded value for

each emotional dimension is given a slightly higher

weight. This stems from the assumption that the in-

tensity of the intended emotional expression can vary

throughout the course of the animation, but it will at

some point reach a maximum absolute value, indica-

tive of the feeling the character is aiming to express.

3.3. LMA Feature Generation

After training the LMA to PAD models, they were

then used to generate a new dataset. This dataset

stored our sets of LMA Features as target variables

and their predicted PAD coordinates as inputs. New

models capable of synthesizing new LMA Feature

values from given PAD coordinates were trained us-

ing this data. First, an Autoencoder was created to

convert the 25 LMA Features into a 5 dimensional

Latent Feature space - l1, l2, l3, l4, l5 - and vice-versa.

This was done to decrease the overall complexity

of the PAD-LMA mapping problem.16,17 A set of 5

Gradient Tree Boosting regressors was then trained

to map PAD coordinates into each of these Latent

Features. Figure 6 shows the process of generating

new LMA values. The PAD coordinates are con-

verted into Latent Features which in turn get de-

coded by the AutoEncoder into a set of correspond-

ing LMA Features.

Fig. 6. Generation of LMA Features from PAD coordi-
nates.



January 5, 2023 12:50 output

6 Diogo Silva

The Autoencoder Neural Network was trained

for 1024 epochs and it managed to accomplish a

mean absolute reconstruction error of 0.17 on the

test set. We then generated a new labeled dataset

using our PAD coordinates as input and the latent

features created by the Autoencoder as output. This

new dataset was used to train 5 regressors built us-

ing XGBoost in a manner similar to the predictors

for Emotional Classification. Through this process

we achieved an overall mean absolute error of 0.19

between the predicted emotional coordinates of the

generated LMA Feature set and the original ones,

with Pleasure an error of 0.19, Arousal 0.24 and

Dominance 0.14.

3.4. Motion Synthesis

Given a new set of desired PAD coordinates it is

possible to synthesize and apply motion changes to

the character in real time. This editing can be per-

formed multiple times and is done in a multithreaded

process so as to avoid interrupting or slowing down

the current animation’s display. We designed a set of

6 Heuristic Rules, each responsible for tweaking the

position or rotation of one of our core joints - Hips,

Chest, Hands, Elbows, Feet and Neck. Changing up-

per body joints was the main focus as these tend to

have the most impact on the conveyed emotion, while

lower body joints are more important for balance and

motion integrity rather than expression.11 A subset

of our rules can be seen in Figure 7. Each of these

rules works by taking into account the current posi-

tion or rotation of the joint its trying to change and

one or more associated coefficients. The underlying

idea behind each heuristic rule is that, by comparing

the baseline animation’s LMA features - which reflect

the character’s current emotion - with the generated

ones - which correlate to the new desired emotion -

we can then use coefficients to decide in which man-

ner each joint should be altered. To exemplify, rule 1

- g1 - changes the hips’ height. The coefficient associ-

ated with rule 1 represents a comparison between rel-

evant baseline and generated LMA Features. If this

coefficient value is larger than one then that means

that the current animation’s associated LMA Fea-

tures are smaller than their corresponding generated

counterparts - chest-pelvis height, body volumes and

so on - and as such, we want to increase them by in-

creasing the hip’s height and vice-versa. Every other

rule was designed in a similar manner.

Fig. 7. 2 of our 6 Motion Synthesis rules.

Whenever a new set of PAD coordinates is pro-

vided, new values for our set of LMA Features are

created. These generated LMA Features. together

with the animation’s recorded LMA features, are uti-

lized to compute the coefficients used in our heuristic

rules. Each rule is associated with a different sub-

set of LMA Features and its associated coefficients

are computed by finding the value that minimizes

the distance between the corresponding subset of

recorded and generated LMA features. For exam-

ple, rule g1 aims to modify the position of our hips

joint. To compute c1, the coefficient associated with

rule g1, we find the value that minimizes the differ-

ence between the values of all recorded and gener-

ated LMA features that pertain to the hips. Looking

at Figure 1, for coefficient c1, these features include

f9, f11, f12, f13 and f15. All coefficients are initialized

at 1.0 and are minimized using Powell’s method.18

After computing the coefficients for each rule,

the system then synthesizes the changes to the pose

necessary to convey the desired emotion. If the char-

acter is being controlled by a learnt policy that

means all poses are newly created at each frame. As

such to get each frame’s baseline pose we wait for it

to be generated and interject it just before it gets ap-

plied to the character. The heuristic rules are given

the currently extracted pose to generate new core

joint positions. These positions get handed to the

Inverse Kinematics module to compute a new pose

that attempts to get the core joints as close as possi-

ble to their desired synthesized positions, while still

respecting the character’s body restraints to avoid

unnatural postures. The generated pose is then ap-

plied to the character, replacing the baseline and thus

altering the character’s emotional expression.
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4. Final System

The EEMC system was built in Python 3.8, using

PyBullet19 as the underlying engine. All machine

learning models were trained offline in a dedicated

external server. Emotional Classification and Mo-

tion Synthesis is done in multithreaded processes and

takes, on average, less than 3 seconds to execute and

apply. The system’s test results, project code and

other resources, were made publicly availablea.

To illustrate the functioning of our EEMC sys-

tem the Graphical User Interface (GUI) shown in

Figure 8 was developed. Users are shown a window

with the virtual character performing the specified

motion. They can pan the camera around and zoom

in and out. If the user specified a policy-based char-

acter controller an additional character is also placed

alongside the main one, showcasing the reference mo-

tion the policy learned from. The GUI shows the cur-

rent results of the Emotional Classification by dis-

playing the predicted Pleasure, Arousal and Domi-

nance coordinates. To specify new desired PAD coor-

dinates the user can freely tweak the corresponding

sliders or select one of the available presets. Hitting

the confirm button triggers the Motion Synthesis

with the coordinates currently on the sliders. Aside

from this, system state information is also showcased.

Specifically, the GUI indicates whether the anima-

tion is running, has looped or has stopped, whether

Emotional Classification is still ongoing or has fin-

ished and whether a new motion is being synthesized.

Fig. 8. A GUI showing the current Emotional Predic-
tion, system state and Motion Synthesis controls.

Triggering the Motion Synthesis module will al-

ter the character’s motion in real time. Figure 9

showcases 4 generated motions synthesized from the

same baseline animation. The “Confident” character,

for example, highly elevates their shoulders, widens

their upper body volume and exposes their neck,

while the “Afraid” character raises their arms to

protect their torso and slumps down, reducing its

body volume. Our synthesis works best when applied

to a neutral baseline movement but it nevertheless

works with different base emotions. Both our emo-

tional classification and our synthesis were trained

and designed for locomotion-type motions, specifi-

cally walking and running. Whilst they can still be

applied to other types of animations without addi-

tional changes, the results won’t be as consistent.

Motion Synthesis seems to suffer the most from this

in the quality of the generated motions, mostly due

to the fact that our heuristic rules were purposefully

tweaked for locomotions. The Emotional Classifica-

tion also suffers in the accuracy of its predictions

but still manages to, more often than not, predict

the correct emotional octant.

Fig. 9. Four motions synthesized using the same base-
line motion and 4 different desired emotions.

5. Results

User tests were conducted in order to evaluate the

performance of the Emotionally Expressive Motion

Synthesis. We wanted to evaluate how the generated

motions would compare against the ones from the

Bandai-Research Motion Dataset.12 These reference

motions were recorded with professional paid actors

performing motions in very specific emotional styles.

ahttps://heroufenix.github.io/expressive animations web/
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Our aim was to infer the synthesized motions’ quality

by checking if there were any major statistical differ-

ences between the answers users gave when presented

with reference animation clips versus the generated

ones. Furthermore we also wanted to compare the

two LMA Feature generation approaches to under-

stand if one outperformed the other in terms of emo-

tional expression quality as perceived by users. A set

of video clips was created using our motion genera-

tion over both a Kinematic and a Policy-Controlled

physics enabled character. Motions were generated

to convey a subset of the Bandai-Research Motion

Dataset’s12 emotions covering a wide spectrum of the

PAD model - “Sad”, “Confident”, “Tired”, “Afraid”,

“Angry” and “Happy”. Every motion was generated

by altering the same base “Neutral” walk anima-

tion. The intent was to check whether the generated

motions managed to convey their intended emotions

as well as the reference mocap. Two distinct tests

were conducted with 40 anonymous, paid partici-

pants each. The tests consisted of online forms con-

taining the aforementioned recorded animation clips

mixed together and sorted randomly. Clips types dif-

fered from reference mocap or synthesized applied to

either a kinematic or policy-based character.

5.1. Emotion Identification Task

The first set of participants were asked to view each

clip and select which emotion they thought the char-

acter was trying to express from a given list. The goal

was to provide an initial insight towards how easy

the generated motions’ emotions were to identify. As

such, a clip’s performance is better the higher the

percentage of participants that manage to correctly

guess the character’s intended emotion. For exam-

ple, if a character is attempting to convey the feel-

ing “Angry”, the more participants that answer with

“Angry”, the better that clip performed. The quality

of each generation technique was then ascertained by

comparing its performance against each other and,

more importantly, against the reference mocap. The

results were then gathered in the clustered bar charts

and analyzed. Looking at the reference mocap, most

participants managed to correctly identify the emo-

tions “Afraid”, “Confident”, “Happy” and “Tired”,

although not by a vast majority in most cases. Com-

pared to mocap, the generated motions applied to a

Kinematic character managed to output better re-

sults, with the correct emotions being the most se-

lected in all cases but “Tired” which nearly tied

with “Sad”. As for the generated motions applied to

a Policy-based controller, the best performing emo-

tions were “Confident”, “Sad” and “Tired” with the

remaining ones being in second or third place. In

general, both generated models had similar perfor-

mances comparatively to each other and to the ref-

erence mocap data.

5.2. Primed Emotion Agreement Task

Certain emotions have intrinsic ambiguity when lack-

ing context,20 which might have influenced the an-

swers given in the first test, explaining some of the

obtained results. “Tired” and “Sad”, for example,

are both very low energy emotions and the way they

get conveyed is somewhat similar, especially in the

reference mocaps. As such, when presented with just

the clip with no further context or information about

what the character’s intentions are, it becomes easy

for users to mix these emotions. To counteract this,

a second test was conducted where participants were

explicitly told which emotion the character was try-

ing to express. They were then asked to rate how

much they agreed that the character was in fact ex-

pressing said emotion. Participants could answer us-

ing a Likert scale from 1 (Completely Disagree) to 5

(Completely Agree). The overall goal of this test was

to infer how accurately each clip managed to convey

their intended emotion, as perceived by the partic-

ipants. As such, clips perform the better the more

participants agree that the presented emotion accu-

rately matches the one showcased by the character

in its motion.

An initial Friedman test done for each emotion

showed that there was no statistically significant dif-

ference between our video clip types for “Afraid”

(p = 0.519), “Confident” (p = 0.121) and “Angry”

(p = 0.657). An additional Wilcoxon Signed Rank

Test on the remaining emotions - “Sad”, “Tired”,

“Happy” - confirmed, for all cases, a statistically

significant difference between the generated motions

and the reference mocap (p < 0.001). Figure 10 ex-

emplifies the dispersion of answers per type of clip

for the emotions where a statistically significant dif-

ference between the type of clip was found. For the

“Sad” and “Tired” emotions, both types of genera-

tion actually outperform the reference mocap mean-

ing that for these particular emotions, our gener-

ated motions are more easily identified as their cor-
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responding emotions. For the emotions “Confident”

and “Angry” the results were similar regardless of

the clip being of a mocap or a generated motion.

On the “Afraid” emotion we can see that the gen-

erated motion applied to the policy-based character

performed slightly worse, but when applied to a kine-

matic character it still presented results similar to

the reference mocap. The “Happy” emotion was the

only one in which mocap outperformed our gener-

ated motions, although they still had decent results

with most participants agreeing that the character

was in fact exhibiting “Happiness”.

Fig. 10. Value distribution for the emotions “Sad”,
“Tired” and “Happy” in regards to each type of clip.

5.3. Discussion

Looking at the results of both tests, participants,

for the most part, managed to correctly identify and

tended to agree with, the emotions that the gener-

ated motions were trying to convey. Moreover, cer-

tain emotions were more easily identified compara-

tively to the reference mocap. This showcases the

efficacy of our system, as it proves that we can

achieve results with similar emotional expressive-

ness to professional-grade mocap without the need

and costs of recording several actors performing each

of the desired emotions. In terms of character con-

troller type, both Kinematic and Policy-based char-

acter controllers seemed to present comparable per-

formances. The obtained results didn’t seem to de-

viate much within generation method as there was

never an instance where results drastically changed

depending on the character controller’s type. This

seems to indicate that the EEMC system can be

effectively used regardless of controller type broad-

ening its range of application to not only conven-

tional mocap-based kinematic animations but also

automatically generated policy-controlled motions.

6. Conclusion

We have showcased our system for Emotional Clas-

sification and Emotionally Expressive Motion Con-

trol of Locomotion animations. We have proven that,

through the usage of select LMA features we can

accurately identify a character’s expressed emotion

in the 3D PAD Emotional space. We also managed

to create a methodology for generating a new set

of LMA Features with desired emotional values and

use it to alter a character’s motion in real time and

without requiring any additional data or training.

The system works not only on Kinematic controllers

driven by mocap, but also on physics-enabled charac-

ters controlled by learnt policies. Our system’s value

lies in the fact that we can alter a motion’s emotion

in real time without the need for any further train-

ing, bypassing the need of having to record a mocap

or train a character controller policy for each emo-

tion that the character is meant to express over the

same motion. The fact that the system can be used

interactively and that changes and predictions are

output in real time means that it can be used not

only to create new animations offline, but could also

be integrated into applications that require anima-

tion changes to occur during run time. A GUI was

also created in order to showcase the framework’s

capabilities.

In terms of future improvements, the dataset

we used grouped animations into preset styles rather

than emotional coordinates. As such, all animations

that aimed to express the same emotion were la-

beled with the exact same Pleasure, Arousal and
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Dominance values. In reality not all animations with

the same emotion express it with the same intensity,

and the emotional coordinate values are subject to

change even during the course of the same animation.

It would be interesting to explore our approaches us-

ing an enriched dataset that further split each ani-

mation’s labels into chunks, adding more granularity

to the emotional expression of the data. Increasing

the overall animation and emotional variety, along-

side further tweaking our motion generation heuristic

rules may also improve our system’s performance on

non-locomotion animations. It would also be worth

exploring different avenues for LMA Feature gener-

ation. More specifically, we believe that Generative

Adversarial Networks or Variational AutoEncoders

could have the baseline generative capabilities to ac-

complish the feature generation task.10
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