
GLSL Ray Tracer
P3D 2nd Assignment - May 2021

Daniel Gonçalves [98845]

Diogo Silva [87652]

Henrique Gaspar [98879]



Table of Contents

Main 1

Ray Colour 1
Functioning 1
Direct Lighting 2
Scatter 2

Intersections 2
Sphere 2
Moving Sphere 2
Triangle 3

Extras 3
Fuzzy Reflections & Fuzzy Refractions 3
Camera Zoom + Orbital Camera 3
Russian Roulette 3

1 Main

For this assignment the team created a Progressive RayTracer using GLSL. Rather than taking multiple
samples per pixel in each frame, we create a feedback loop using a fragment shader and feed all previous
results to the current frame. For each frame we also use a random offset for the current pixel (which inherently
creates an Anti Aliasing effect). The number of samples to take per pixel is also capped at 10000 in order to
avoid floating point issues (i.e the running average growing too large). As such, the main function is the
starting point of the program: It sets the camera and all its variables needed for itself but also for other
techniques that will be applied in the future (Motion Blur, for example), deals with the movement of the mouse
to update the position of the camera, asks for the color of a given pixel while also performing gamma
correction. The way we store all previous frames results is by saving it as a texture in channel0 and feeding it
as input to the current frame. Additionally we use the 4th channel of the aforementioned texture to store the
frame counter in order to reset it when the scene is altered (i.e, when we move the mouse), so that we can
discard past frames and start from scratch. Finally, our scene is represented by “being built on each invocation
of the hit world function”, i.e, it's not actually stored in memory.

At the top of the P3D_RT.glsl file there are some control variables which can be set in order to enable or
disable certain features:

● USE_RUSSIAN_ROULETTE - Enables/Disables Russian Roulette Optimization
● ORBIT_CAMERA - Enables/Disables Orbit Camera
● SHOWCASE_DOF - Swaps the aperture and focal plane distance’s value to better showcase DOF
● SHOWCASE_FUZZYREFL - Swaps the Reflection Roughness value of the right sphere to better

showcase fuzzy refractions
● SHOWCASE_FUZZYREFR - Swaps the Refraction Roughness value of the middle sphere to

better showcase fuzzy refractions
● NO_NEGATIVE_SPHERE - Removes the inner “negative radius” sphere

1



2 Ray Colour

2.1 Functioning
The ray color function is responsible for dealing and assigning a color for each pixel, taking into consideration
refractions, reflexions, light sources and even the background that is supposed to be shown when a given ray
does not hit any object. Due to lack of recursion, the way RayColour works is using a for cycle (iteratively
rather than recursively). We start the pixel color at black (0,0,0) and a throughput color at white. We shoot the
ray we got from our camera (which computes the primary ray direction taking into account the aperture of a
lens and the focal plane in order to create the Depth of Field effect) and, when that ray hits an object we add
it’s color to our throughput (direct lighting). Afterwards we get a secondary ray which corresponds to the
current ray’s bounce off the hit object, swap our current ray with that one before the next cycle, and update the
throughput with the attenuation (which most of the times corresponds to the object’s albedo) received from the
scatter function.

2.2 Direct Lighting
The direct lighting method (which is currently called 3 times, due to having 3 point lights in the scene), first
checks whether the intersection computed in the hit_world before is in shadow or not (by calling hit world
again but with a ray going from the intersection point to the light, a shadow feeler). If not in shadow we sum to
our current colour variable the colour computed using the Blinn-Phong model (noting that we hard set values
for the hit object’s specular, diffuse, shininess and respective specular and diffuse color depending on the type
of object).

2.3 Scatter
Our scatter function is used to get the ray resulting from our current ray bouncing off the material. This
function works by checking the type of material the hit object is: For diffuse (lambertian) objects, we achieve
color bleeding by randomly “bouncing in a cosine weighted hemisphere direction of the surface normal” - since
in these materials light sort of bounces in all directions, what we do is generate a unit sphere on top of the hit
point, and pick a point in its surface, done by adding the hit normal to the hit point (to get the sphere center) to
a normalized random unity sphere, returning the scatter direction as a ray going from the intersection point to
this computed one. For metallic objects we simply compute the reflected ray (as seen in mirror reflections)
and perform fuzzy reflection by deviating it in a random direction using a sphere of radius equal to the
reflection roughness (further explained in section 4.1). For dielectric materials, we choose whether to return a
reflection or refraction ray by computing Schlick’s approximation of the Fresnel Equation to get the reflection
probability, and then use it to randomly pick between doing reflection or refraction. It should be noted that this
function also returns the attenuation value to which we will multiply our current throughput with (i.e the impact
that this object’s albedo will have on our ray’s current color).

3 Intersections

3.1 Sphere
For the sphere intersection, we decided to use the same method we used for the last assignment, by using
implicit geometry to represent both concepts (sphere and ray) by their mathematical equations. Then, by
mixing them together until we find a single equation in order to t (the multiplier of the ray’s direction), we end
up with a quadratic equation that, by the use of its determinant, can help us distinguish t0 and t1 (that
represent two points of intersection with the sphere) and understand which one represents the “entry” point an
the “exit” point. Important to say that this solution also helps us to know if the ray actually starts inside the
sphere.

2



3.2 Moving Sphere
The moving sphere intersection works very much like the sphere one, with the difference being that we have
to compute the sphere’s center by taking into account the sphere’s center at t0, the sphere’s center at t1, and
the time at which the ray was sent.

3.3 Triangle
For the triangle intersection, and for the sake of efficiency, we used the Tomas Moller technique and defined
our triangles by barycentric coordinates when testing a possible intersection. This approach is far better than
the traditional geometric one because it only needs to store the vertices of each triangle, and not the whole
pnae where it fits. As for the first assignment, since the explanation of this technique is pretty extensive, we
will go to details. Insted, we advise consulting the original document that we used when implementing such
technique: https://cadxfem.org/inf/Fast%20MinimumStorage%20RayTriangle%20Intersection.pdf

4 Extras

4.1 Fuzzy Reflections & Fuzzy Refractions
Although Fuzzy Reflections weren’t an extra we chose to include them in this section since both fuzzy
methods were implemented in very similar fashions. To simulate the surface of our refractive materials having
roughness we implemented Fuzzy Refractions. We started by adding a new roughnessRefr parameter to our
materials. Then we accomplish the fuzziness (both for reflection and refraction) by deviating our scatter ray by
a random direction within a unit sphere with radius equal to the corresponding roughness parameters. As
such, this deviation is done after computing the reflection or refraction direction.

4.2 Camera Zoom + Orbital Camera
For our zoom we created a uniform float value (meaning that this value persists through each call of the
shader) to replace our static fovy. We did this because, by looking at the Shadertoy VS Code plugin, we
discovered it allows for the inclusion of a slider that allows us to play with the uniform’s values during
execution. The downside to this is that we have no way of announcing to our fragment shader that we should
reset the sample counter and reset the scene.

For the orbital camera, all we did was define a minimum and max angle, a sensitivity (i.e how much our
mouse movement impacts the camera movement) and a camera distance variable (how far away from the
target the camera is). We can get our x angle by multiplying our mouse’s x coordinate by this sensitivity and,
as for our y angle we can get it by performing a linear interpolation between the minimum and maximum angle
and the mouse’s y coordinate (making it so the camera is clamped between looking straight up and straight
down). With these 2 angles we can then compute the camera’s eye position.

4.3 Russian Roulette
By default each ray will bounce up to a max of 10 times (or until it hits nothing) before “disappearing” but after
a few bounces the color increment may start becoming negligible enough that the ray should be able to
terminate early without us losing quality. By enabling the USE_RUSSIAN_ROULETTE variable, after getting
the new scatter ray (in the RayColor function) we check what the maximum current throughput color channel
is and use it as the percentage of our ray NOT terminating early - the closer the 1, the lower the probability of
russian roulette terminating our bounces. To further compensate for the fact that we’re terminating our
raytracing function early, we divide our current throughput by the maximum current throughput color channel
(which is between 0 and 1), meaning each individual ray will be brighter, to compensate for the fact that some

3

https://cadxfem.org/inf/Fast%20MinimumStorage%20RayTriangle%20Intersection.pdf


rays may end up being killed to soon. With this performance optimization we’re able to more than double our
FPS (from ~20 to around ~50) without losing any noticeable image quality.

4


