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Abstract—GTSB is a multi-class, single-image classification
challenge held at IJCNN 2011. Automatic recognition of traffic
signs is required in advanced driver assistance systems and
constitutes a challenging real- world computer vision and pattern
recognition problem. A comprehensive, lifelike data-set of more
than 50,000 traffic sign images has been collected. It reflects
the strong variations in visual appearance of signs due to
distance, illumination, weather conditions, partial occlusions, and
rotations. The data-set comprises 43 classes with unbalanced class
frequencies.

Index Terms—Supervised Learning, Classification, Deep Neu-
ral Networks

I. INTRODUCTION

This report serves as a compendium and thorough expla-
nation of all the techniques, methodologies and algorithms
adopted for the elaboration of the first TAA - Tópicos de
Aprendizagem Automática (Topics of Automated Learning) -
project at Universidade de Aveiro. In sum, the task consisted
in the application of Machine Learning techniques, either
developed during class or self-taught, in the solving of one
of the several problems, previously proposed by the course’s
head teacher, Pétia Georgieva.
More concretely, the issue we decided to tackle was entitled
The German Traffic Sign Benchmark (GTSB) and consisted in
the design and creation of an algorithm capable of accurately
identifying traffic signs. Right from the start this topic peaked
our curiosity due to its prevalence and importance in one of
the most commonly known and talked about applications of
Machine Learning nowadays - The creation of self-driving,
AI-powered, autonomous cars. All the buzz we hear about on
a daily basis served both as inspiration as well as a driving
force that made was want to focus our utmost efforts into
achieving the best possible solution to the problem.
In the following sections we will be describing our approaches
to the problem at hand, starting with the analysis of the given
data-set in section 2, we will then proceed to talk about the
way we decided to view and tackle the issue, and the reasoning
behind the adoption of a Neural Network architecture as a
solution, as well as showing the initially obtained results in
section 3. Section 4 focuses on the methodologies utilized
to improve both the individual images and the data-set as a
whole whilst section 5 is used to report adjustments made to

the Neural Network’s model and hyper parameters. Finally,
section 6 presents both the final combination of algorithms
chosen and a brief conclusion alongside a discussion of the
results obtained.

II. DATA-SET ANALYSIS

A. Data-set description

The data utilized for the conclusion of this project, made
available in this link, consists in a total of 51883 images
of varying dimensions, distributed over three different sets
- Meta, Test and Train. Each image contains one of forty-
three possible traffic signs and is included in the directory
correspondent to the set it belongs in. In practice, what this
means is that there are forty-three different classes that an
image can be classified as.
The Meta set contains an example of each of the traffic signs
present in the other sets’ images and is used mostly by us
as a way to know what the appearance of the signs we are
attempting to identify. All images in this directory are named
a number from 0 to 42, indicating what class they belong to.

Fig. 1. All images contained in the Meta set

The Test set contains 12631 different images of distinct
signs all shuffled together. These are the images that we will
be using to test the accuracy of our model with, hence the

https://www.kaggle.com/meowmeowmeowmeowmeow/gtsrb-german-traffic-sign


quality - generally measured in terms of lighting conditions,
blurriness, rotation and/or focus/scale of the sign itself - differs
greatly from image to image in order to assure that the data-
set is as diverse and lifelike as possible, parting from the idea
that in real life visibility conditions are in constant change and
so we should able to accurately classify signs, regardless of
how easy it is for us to see them.

Fig. 2. A subset of images from the Test data-set. The class of each image
can be seen above itself

Finally, the Train set contains 39209 images divided into
43 folders corresponding to what class the image belongs to.
Just as the Test set, images differ greatly in quality to provide
an ample range of examples, of varying difficulty, to train our
model with.

Besides the three pre-organized sets, our data-set also pro-
vided us with three CSV files containing information on the
images present in each set - indicating their width, height,
relative path and most importantly, what class they belong to.

B. Statistical analysis

As aforementioned, our data set contains images that portrait
one out of forty three possible traffic signs, however, it
should be stated that we do not possess an equal number of
representations of each traffic sign. This issue reaccures on
both the Test and Train set, but it is particularly troublesome
when it comes to the latter, since this is the data that will be fed
to our model. Effectively, this means that we will be training
using skewed data, which can lead to the underrepresentation
of certain classes. Furthermore it could also lead to problems
when creating our Cross Validation subset. Both these topics
are expanded upon in section IV.

Fig. 3. A subset of images from the Train data-set. The class of each image
can be seen above itself

Fig. 4. Number of images per class in our training set

III. DEEP NEURAL NETWORK AND INITIAL
CONFIGURATION

A. The problem

As stated previously, the topic of traffic sign recognition
boils down to a classification problem, where each image of
the traffic sign corresponds to a single category, represented
here as a number between 0 and 42.
Before trying to come up with our own solutions, and knowing
how prevalent this challenge is, especially since it had been
introduced during the IJCNN (International Joint Conference
on Neural Networks), we researched the problem and read
several articles detailing possible approaches. While they
varied in the hyper-parameters, such as the used learning rate,
they all shared one thing in common: the usage of a Deep
Convolutional Neural Network, composed of convolutional
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blocks and fully connected layers. The majority of results from
these articles looked promising too: most of the articles we
saw had a test accuracy greater than 93% [1] [3] [4], with one
even managing to get a 98% accuracy [2].
So it was apparent that we had to implement a convolutional
neural network to get the best result. A vast majority of the
articles we found specified the usage of a LeNet5 network,
a concept we’ll explain in the following section, but that, in
summation, boils down to a classic Convolutional Neural Net-
work architecture, designed to recognize pixels from images
with minimal preprocessing [11].
As for our optimizing function, we opted to go with Adam,
basing ourselves in the reports we have looked at. It’s an
optimizing function that’s said to have the advantages of an
adaptive gradient algorithm, namely the way it maintains a per-
parameter learning rate; and the root mean square propagation,
namely how it calculates the learning rate based on an average
of the magnitudes [12]. Finally, we have to talk about the
categorical crossentropy loss function: it’s based on the binary
logistic regression loss function, adapted to include all the
different categories.

−
M∑
j=0

N∑
i=0

yij ∗ log(ŷij)

B. LeNet5 Architecture

The LeNet5 network consists of two convolutional blocks,
composed of a convolutional layer and an average pooling
layer; a flattening layer, two fully connected layers, and one
softmax layer. With the exception of the last layer, all use
a ReLU activation function: a simple function that changes
the negative numbers to equal 0, while the positive numbers
remain unchanged. It’s a widely used function for neural
networks since there is no complicated computations, and,
due to it being a linear function for positive numbers, there’s
no risk for plateaus or saturation as there would be with other
activation functions.

1) Convolutional Block: A convolutional block consists in
a convolutional layer, made to recognize image patterns, like
lines and figures, and an average pooling layer, to reduce the
dimensionality of the input.

2) Flattening Convolutional Layer: A flattening
convolutional layer is a layer with the goal of flattening the
input, which means turning the complex matrix given into a
vector.

3) Fully Connected Layer: The purpose of this layer is to
decrease the dimension of the flattened input.

4) Softmax Layer: The last fully connected layer has the
particularity of using a SoftMax activation function instead of
the regular ReLU function. This function will turn the input
nodes into probabilities that sum to one, ensuring an output

vector that represents the probabilities for the classification of
the inputted image [9].

C. Base Implementation

So now that we have the basis of what a Convolutional
Neural Network looks like, it was time to implement it into
code. We used the library Tensorflow and its Keras modules,
as it provided a very high level way of building the neural
network. The initial structure of the Neural Network we built
has been illustrated in Fig. 5.

Fig. 5. Implementation of CNN

We then decided on the hyperparameters based on the
articles we have seen, mainly a batch size of 200, a learning
rate of 0.002, and 50 epochs.

D. Initial configurations and Graphs Used

It’s also important to establish the metrics we used to check
our progress. The most basic ones were the final accuracy and
loss function values for each data-set (Train, CV and Test).
Since these metrics are generic over all the data, e.g. the
accuracy was the ratio of the number of correct guesses and
the number of guesses, they quickly proved to be inadequate:
since we had a great amount of classes, if the model fails
miserably in one of the less represented classes (as would
be expected), we could still be presented with a pretty good
overall accuracy, hence not being able to detect that some
classes may be suffering; with this in mind we added two other
graphs that could better represent how our model was doing:
a confusion matrix heat-map and a bar graph of accuracy per
class.
The (relative) confusion matrix is a graphical representation of
the relative frequency of what our model predicted the image’s
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class to be for each different class whilst the accuracy per
class bar graph is a graph showcasing the overall accuracy for
each individual class. These two representations will serve as
a better basis to assert if our model is improving or not.
Finally, before moving on to our results, we should establish
that before feeding the data to our model, we divided the
training dataset, taking 20% of all the examples to create our
Cross Validation Dataset. This division is completely random,
not taking into account the number of imbalance in the dataset,
as we’ll analyse later. Finally, all datasets were shuffled before
being fed to the model.

IV. IMAGE PREPROCESSING AND DATA-SET PREPARATION

A. Description

Before we move on to a more in-depth analysis of how we
played with and altered the base model talked about in the
prior section, we will first be succinctly explaining all treat-
ments applied to our base images as well as what modifications
we made to our data-set. It should be mentioned that this data
preprocessing was our first way of attempting to improve our
model’s results as, after the analysis of the images’ overall
quality, we felt that if we could somehow standardize and
improve their visibility we would be facilitating the computer
vision’s identification of the images, hence leading us to a
better outcome. The remainder of this section will tackle all
of the techniques we tried, and their results.

B. Resizing

Firstly we started by trying to homogenize our images by
standardizing their size. Initially the images could vary in both
width and height, with high disparity between each other. We
agreed upon a fixed size of 32x32 pixels as those were the
most commonly used dimensions throughout the papers we
researched. This step was an obligatory one as our Neural
Network required be given an input of a standard size in order
to function.
Following are the obtained initial results after resizing. Show-
cased in Table 1 are the overall results for accuracy and loss
values over the utilized sets, whilst Fig. 6 and 7 report the
relative confusion matrix heat-map and the accuracy per class,
in that order.

TABLE I
INITIAL ACCURACY AND COST RESULTS

Set Accuracy Loss
Train 0.9918069 0.03132440663282988
CV 0.96977425 0.2507336913898897
Test 0.89136976 1.538338404115782

C. K-Fold Cross Validation

It should be noted that, in the previous section, we
presented results for a so called CV set. This is in fact our
Cross Validation set, obtained after applying a 3-Fold on our
dataset. We have mentioned that, initially, our dataset was
already divided into 3 sets - Meta, Train and Test - but the

Fig. 6. Initial relative confusion matrix heatmap

Fig. 7. Initial accuracy per class

Meta set was inconsequential and served no use in the overall
training and testing of our model, so what we did was, as
per the teacher’s recommendation, take 20% of our images in
the Train set, and use them to create a new Cross Validation
(CV) set.
The reason for using a Cross Validation set is because it
”helps us better use our data, and it gives us much more
information about our algorithm performance” [8], allowing
us to fine tune our model’s parameters and choose the best
one.
The way we did this at first was by randomly picking 20%
of the images in the Train set, and transferring them into the
new CV set. A problem with this approach, however, was
that, due to the highly skewed data, it could happen that
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the least represented classes in the Train set would be nigh
nonexistent in the newly created set. This was obviously an
issue, but for the results presented in the previous section,
that was the way we formulated the CV set.

Fig. 8. CV (left) vs Train (right) class representation using random distribution

After some deliberation we changed our approach by creat-
ing an algorithm that would take 20% randomly chosen images
of each class’ subset in the Train set and transferring them into
our CV set. Our aim was to create a CV set that would have a
representation of each class similar to the one in our Train set,
hoping that by assuring that each class is, at least minimally,
represented in the cross validation set, our model’s training
would better fit the parameters and output a more accurate
model. As shown below in Fig. 9, our CV set’s silhouette
using this technique is much more similar to the Training set’s
the overall and per class accuracy both improved compared to
the previously obtained using the random distribution CV, as
observed in Fig. 10 and 11.

Fig. 9. CV with equal class distribution (left) vs Train (right) class represen-
tation

TABLE II
ACCURACY AND COST RESULTS USING CV WITH EQUAL CLASS

DISTRIBUTION

Set Accuracy Loss
Train 0.9913606 0.06068361176813464
CV 0.97627854 0.26256666635979714
Test 0.9223278 1.8555431108631635

D. Conversion to Grayscale

Moving back to image preprocessing, we decided it would
be a good idea to try to convert our images into grayscale. This
was done both for two main reasons. The first was to attempt
to decrease the total amount of data our model would have
to process, since we would only have to work with images

Fig. 10. Relative confusion matrix heatmap after changing the way we created
the CV

Fig. 11. Accuracy per class after changing the way we created the CV

containing 32x32 pixels worth of data, as opposed to RGB
images which each contain 3 channels of 32x32 pixels (one
channel for each colour) [1], [2], [7]. The other reason was
because, allegedly, ”rejecting color information can even boost
the final result” [1]. Effectively, what we verified in practice
is that both premises held true, the processing speed for the
32x32 RGB images, averaging over 5 seconds per epoch, was
reduced to about 3 seconds per epoch with grayscale images.
As shown in Fig. 13 and 14 the results per class were similar to
the ones before, despite the overall accuracy and loss, shown
in Table III, having gone down a bit. We decided to keep using
Grayscale for the remainder of this work.
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Fig. 12. A subset of images from the Test data-set after applying Grayscale
conversion

TABLE III
GRAYSCALE ACCURACY AND COST RESULTS

Set Accuracy Loss
Train 0.99276334 0.02380184043415325
CV 0.9809973 0.1594154959352835
Test 0.9140143 0.899924260882272

Fig. 13. Relative confusion matrix heatmap after applying Grayscale trans-
formation

Fig. 14. Accuracy per class after applying Grayscale transformation

E. Normalization and Equalization

Overall, the results obtained after changing all images
to grayscale were outstanding. Most classes were showing
over 80% accuracy, with a lot of them even going over the
95%. There were, however, exceptions. Classes like class
27, had a lot of discrepancy comparatively to the rest. After
analyzing some of the images in the Train set belonging
to these classes we noted that they had particularly poor
pictures in terms of visibility so we thought about trying to
fix this issue. Subsequently, this lead us into doing some
research about image treatment and quality improvement. Out
of all techniques discussed in the internet, two in particular
peaked our interest due to being mentioned on most reports
we read about image classification using machine learning:
Normalization and Equalization.

Both techniques produce similar results but they achieve
them by applying different methods. Normalization simply
consists in normalizing all pixel values in an image to make
them fall into a given range (normally, between -1 and 1).
On the other hand, equalization simply attempts to produce
a histogram with equal amounts of pixels in each level of
intensity. Up until now we were already applying a very simple
form of normalization, that would, for each pixel of the image,
subtract, and divide it by half the max intensity

PixelV alue− 127.5

127.5

in order to make it fit into the [-1, 1] range, before feeding
the images to our model, with the hindsight that working
with numbers with a range as high as 255 would complicate
the computer vision problem [1], [2]. However, we decided
to also attempt other techniques of normalization and
equalization in the hopes of producing images that would
be more easily identifiable by our model following the same
steps as some of our references, as well as trying other
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methodologies we found. We started by applying a simple
Histogram Equalization on our images, which wielded the
underwhelming results presented in Fig. 16, 17 and Table IV.
Notice how we still have classes with a very decent accuracy
rate, but some other classes actually presented worse results
than before.

Fig. 15. A subset of images from the Test data-set after applying Histogram
Equalization

TABLE IV
HISTOGRAM EQUALIZATION ACCURACY AND COST RESULTS

Set Accuracy Loss
Train 0.99553686 0.013727671238271915
CV 0.9767887 0.1320002153411293
Test 0.9055424 0.7252057633003602

As the last equalization technique ended up harming our
model’s performance, rather than helping it, we decided to
try a different algorithm called Contrast Limited Adaptative
Histogram Equalization. This method differs from the last
because it’s based around dividing each image into sections,
and equalizing each of these individually. Supposedly, this
should make it so our images have a better contrast to
differentiate the sign from the background, but once again
the results obtained were very disappointing (although better
than after the last equalization), as once more the overall
performance of our model was lowered, as shown in Table
V and Fig 18 and 19.

After analyzing the resulting images of the last techniques
we believe that the reason equalization might not have worked
was due to the fact that, despite the algorithms really helping
the darker images, making the traffic signs more noticeable,
for blurrier and lighter images, the algorithm was actually

Fig. 16. Relative confusion matrix heatmap after applying Histogram Equal-
ization to our images

Fig. 17. Accuracy per class after applying Histogram Equalization to our
images

TABLE V
CONTRAST LIMITED ADAPTATIVE HISTOGRAM EQUALIZATION

ACCURACY AND COST RESULTS

Set Accuracy Loss
Train 0.9919982 0.028427384311084613
CV 0.9769162 0.1696492087726914
Test 0.9121932 1.0186666555292698
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Fig. 18. A subset of images from the Test data-set after applying Contrast
Limited Adaptative Histogram Equalization

Fig. 19. Relative confusion matrix heatmap after applying Contrast Limited
Adaptative Histogram Equalization to our images

Fig. 20. Accuracy per class after applying Histogram Contrast Limited
Adaptative Histogram to our images

hindering the overall visibility of the image. With this knowl-
edge in hand we decided to try out a different technique
of normalization. Rather than normalizing our images using
the previously mentioned formula, we tried out OpenCV’s
algorithm which finds the lowest and highest intensity value
pixel in the entire dataset, and determines a factor that will
scale the lower pixel values closer to -1 and the higher ones
to 1, supposedly creating a more uniform and appropriate to
our dataset scaling of the values within that range. In practice,
we did verify that the results obtained, observable in Fig. 21,
22 and Table VI, were better than the ones we had when using
our original normalization, so for the following sections, we
will be proceeding with this algorithm.

TABLE VI
OPENCV’S NORMALIZATION ACCURACY AND COST RESULTS

Set Accuracy Loss
Train 0.9967164 0.012512560527128116
CV 0.98622626 0.1027920527138769
Test 0.9360253 0.659059932324951

F. Contrast modification

With the surprisingly bad results of Contrast Limited Adap-
tative Histogram Equalization, we wondered if the reason as
to why the algorithm failed was because it was inadvertently
increasing the contrast of images that were already in high
contrast, thus leading us to ruining perfectly acceptable im-
ages, in the hopes of fixing the bad ones. Figuring that what
most images were suffering from was low exposure and focus
on the traffic sign, we decided to try to, again, increase the
contrast of the pictures, but this time apply that transformation
only to images that were deemed to be in low contrast. This
was accomplished through the usage of OpenCV’s exposure
detection method and contrast increase. However, it was to no
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Fig. 21. Relative confusion matrix heatmap after applying OpenCV’s Nor-
malization to our images

Fig. 22. Accuracy per class after applying OpenCV’s Normalization to our
images

avail as the results obtained were rather poor, as figures 23,
24 and Table VII illustrate.

G. Data Augmentation

After settling upon a choice of image preprocessing
algorithms - Grayscale with OpenCV’s Normalization -
it was time for us to finally address the issue of data
disparity between classes. Most all of our references
mentioned artificially increasing the number of data for the
underrepresented classes in order to achieve a Train dataset
that would better represent all traffic signs. We attempted

TABLE VII
CONTRAST INCREASE ACCURACY AND COST RESULTS

Set Accuracy Loss
Train 0.99795973 0.006693505189067708
CV 0.9799771 0.11181414452724814
Test 0.88994455 0.7147907885689634

Fig. 23. Relative confusion matrix heatmap after applying Contrast modifi-
cation

Fig. 24. Accuracy per class after applying Contrast modification
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two forms of data augmentation. First we verified that the
most represented signs rounded at about 1500 images, whilst
the lowest were about a measly 200, so what we did was
inject artificially created images into all subsets that had less
than 1200 images until they reached that threshold. The way
images were created was by randomly picking an image of
the given subset and applying a random rotation and gamma
adjustment. The obtained results weren’t necessarily bad, but
they were still worse than the ones obtained prior, as shown
in Fig. 25, 26 and Table VIII.

Fig. 25. Number of images per class on the augmented Train set and the CV
set built from it

TABLE VIII
FIRST DATASET AUGMENTATION TECHNIQUE ACCURACY AND COST

RESULTS

Set Accuracy Loss
Train 0.97684383 0.09540962100309129
CV 0.9633406 0.34100636054404126
Test 0.92494065 2.889168781619064

Fig. 26. Relative confusion matrix heatmap after applying the first Dataset
augmentation technique

Fig. 27. Accuracy per class after applying the first Dataset augmentation
technique

We figured that the poor results might have been caused
due to the fact that, using the previous algorithm, the least
represented classes in the original dataset would mostly con-
stitute of artificial images in the augmented one. It should
be said that, while the transformations used to create new
images effectively create pictures distinct to the original one,
they will still share a lot of similarities, hence they’re not
as effective at training the algorithm since there won’t be
enough variation between each other. With this in mind we
gave data augmentation another shot, this time by creating
artificial images so that all subsets would have a total of 5000
images and then picking, at random, 1200 images of each
subset. Unfortunately, the results managed to be even worse
than last time as can be seen in Fig. 29, 30 and Table IX.

Fig. 28. Number of images per class on the augmented Train set and the CV
set built from it using the second augmentation algorithm

TABLE IX
SECOND DATASET AUGMENTATION TECHNIQUE ACCURACY AND COST

RESULTS

Set Accuracy Loss
Train 0.9837597 0.062307794080224146
CV 0.93418604 0.7422836606585702
Test 0.88654 12.478988825017291
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Fig. 29. Relative confusion matrix heatmap after applying the second Dataset
augmentation technique

Fig. 30. Accuracy per class after applying the second Dataset augmentation
technique

H. Conclusion

Overall we were rather disappointed with the low im-
provement of results between each of our attempts. Still, we
managed to increase our overall accuracy and accuracy per
class little by little. The reason as to why our preprocessing
techinques, like equalization and contrast correction, didn’t
wield the results we expected might have been to the overall
disparity in image variation, as applying an algorithm to
certain images might improve them, but gravely worsen the
visibility of others. Another possible reason might have been
that we were focusing on the wrong preprocesses or that we

should have added more such as blur correction.
When it comes to data augmentation, we believe the issue
lied upon the fact that the least represented classes would
constitute mostly of artificial images upon data augmentation,
even after applying the second technique. Another possible
problem might have the way we generated new images as the
only transformations we applied were a rotation and gamma
(brightness) change. This theory is further supported by the
fact that the Train and CV set actually presented really good
(and better than the previously achieved) accuracy, but when
it came to the Test set the performance dropped considerably
due to the fact that there were no artificial images in the Test
set and our model had been trained using (artificial) images
that were similar to each other and didn’t present as much
variance as needed to properly classify the pictures. Had we
been given more time for this project we would perform more
and more varied transformations when generating an artificial
image to try to distinguish it as much as possible from the
original one (by changing contrast, blurriness, saturation, etc.)
so that, even for the least represented classes, our model would
be trained with a properly varied dataset.

V. MODEL AND HYPER-PARAMETER ALTERATIONS

A. Epochs

In the context of Machine Learning, an Epoch is defined
as when the entire training database is passes forward and
backward in the neural network. The model will then change
its values after every epoch to get a better accuracy and lower
loss values.
However, as it’s to be expected, one epoch can take a very
long time to be processed and may be costly for the computer,
and after a certain number of epochs, the values will end up
converging to a certain value.
So, we decided to study the evolution of the accuracy and loss
values in relation to how many epochs have passed, resulting
in the graphs contained in Fig. 31 and 32.

Fig. 31. Accuracy per Epoch

This shows there’s not real reason to train the model for
more than 25 Epochs, as the model has stabilized by then.

B. Changes in the Neural Network Structure

To follow the change in the hyper parameters, we decided
to change our neural network’s architecture and compare the
obtained results. Firstly we started by entirely removing one
of the convolutional blocks in our LeNet5, resulting in the
results shown on Table X and Fig 33.
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Fig. 32. Loss per Epoch

TABLE X
ACCURACY AND COST RESULTS WITH 1 CONVOLUTIONAL LAYER

Set Accuracy Loss
Train 0.9861643 0.046899364307072436
CV 0.9567657 0.2835945429848387
Test 0.8736342 1.5865751462990767

Quite clearly these results were showcasing overfitting, that
is the parameters are adapting too much to the train set, but
can’t predict well enough new examples.
After this, we tried using only one fully connected layer, giving
us the results shown on Table XI and Fig. 34.

TABLE XI
ACCURACY AND COST RESULTS WITH 1 FULLY CONNECTED LAYER

Set Accuracy Loss
Train 0.9966208 0.01381127847828818
CV 0.981635 0.10577674771742457
Test 0.91900235 1.6950519664691995

While showing better results than the previous network, it
still doesn’t justify the change in the network, as we’re getting
worse results than with our original LeNet 5 model.

C. Learning Rate

The next thing we have to study is the change of learning
rate and how it affects the final results, as well as the overall

Fig. 33. Accuracy per Class with 1 Convolutional Layer

Fig. 34. Accuracy per Class with 1 Fully Connected

efficiency. Learning rate in neural networks can be summarised
as how much should we change the node value based on its
last cost. A learning rate too small and it can take too long for
the model to reach a good final result; a learning rate too large
and the values may never converge to reduce the cost function.

Up until now we have based our model on a learning rate
of 0.002, based on what we have seen from the other reports
and neural network models. We’ll now change this learning
rate, starting with 0.00025 and doubling it until it reaches
approximately 0.1; and we’ll compare the overall accuracy and
loss function resulted from each different rate. The results are
shown in the following graph (Fig. 35).

Fig. 35. Accuracy and Loss per Learning Rate

As expected, the greater the values the worse the final
values of loss function and accuracy. It must be said, however,
that we were not expecting such a quick decline in accuracy
and increase in loss, as the values greater than 0.02 show
abysmal results. As aforementioned, however, the learning rate
also affects the time it takes to train our model, so we also
reported on the time it took (in seconds) for each of the tested
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learning rate values. These results can be seen in Fig. 36 and,
as expected, the smaller the learning rate value, the longer it
takes for our model to train.

Fig. 36. Time taken to train per Learning Rate

While this proves that greater learning rates may impede
the learning process of the model, we must also see the
consequences of having a learning rate that’s too low; the time
taken to train must fall within an arbitrary, acceptable range
of time without risking depleting the developer’s patience.

D. Dropout

As we’ve seen throughout this report, the model has a great
tendency to overfit to the training data. This, of course, has
to be mitigated for better predictions for the test data. In
this context, we were introduced to the concept of dropout:
a regularization method that forces some of the output nodes
in a layer to be randomly ignored.
The goal of dropping out nodes is to force other input nodes
to have a greater responsibility, mitigating the noise caused
during the training.
Of course, we didn’t immediately know what values of dropout
to pick, and on which layer should we put them. From other
papers, we saw that the best results were when there was a
dropout value in between the two convolutional blocks, and
between the two fully connected layers. So we decided to
study the values of accuracy and loss based on the value and
its location on the network.
We started by choosing the best value (out of the ones we
tried out) for dropout between the two convolutional blocks.
The overall accuracy and loss values for the test set for each
of the tested dropouts can be found on Table XII.

These results show us that the best value for a dropout
value would be 0.1; so we trained the whole model again with
this value, this time to see how it compares with the original
network, taking note of all the measures: final accuracy for
test set, data set and CV set (Table XIII), confusion matrix
(Fig. 37) and accuracy per class (Fig. 38).

Here we see that some underrepresented classes are hurt
badly by this method, not justifying its use despite the good
result in the global accuracy.

TABLE XII
ACCURACY AND COST RESULTS WITH DROPOUT AT CONVOLUTIONAL

BLOCKS

Dropout Accuracy Loss
0.0 0.9108 0.7842
0.1 0.9283 0.4634
0.2 0.9072 0.6165
0.3 0.9098 0.4911
0.4 0.8990 0.4458

TABLE XIII
ACCURACY AND COST RESULTS WITH A DROPOUT P=0.1 AT

CONVOLUTIONAL BLOCK

Set Accuracy Loss
Train 0.97988397 0.06783701262577657
CV 0.9792118 0.10608937150322803
Test 0.92114013 0.5530987583991562

After this, we applied the same method of study on a dropout
at the fully connected layer. Table XIV shows all of the tested
values.

TABLE XIV
ACCURACY AND COST RESULTS WITH DROPOUT AT FULLY CONNECTED

LAYERS

Dropout Accuracy Loss
0.0 0.8882 1.0522
0.1 0.9131 0.7051
0.2 0.9082 0.7238
0.3 0.9216 0.5324
0.4 0.9382 0.4076
0.5 0.9440 0.4010
0.6 0.9369 0.4398
0.7 0.9310 0.4905
0.8 0.9295 0.3830
0.9 0.0594 3.4628

In this table (XIV), we see that a dropout value above 0 does
seem to improve the global accuracy, reaching a really good
result when it’s 0.5; just like how we did before, we’ll use
the global accuracy and loss function for all data-sets (Table
XV), the confusion matrix (Fig. 39) and accuracy per class
(Fig. 40) to better study how the model behaves.

TABLE XV
ACCURACY AND COST RESULTS WITH A DROPOUT P=0.5 AT FULLY

CONNECTED LAYER

Set Accuracy Loss
Train 0.9803622 0.06598889759250766
CV 0.98597115 0.08362035378063079
Test 0.93705463 0.5070506157554827

Showing promising results, we came to the conclusion that
a dropout value of 0.5 after the fully connected layer improved
the overall performance of the model. We decided it’d be worth
looking at how both values we studied more in-depth would
work together: the following are the results with a neural
network with a Dropout p=0.1 at the convolutional block; and
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Fig. 37. Confusion Matrix with a Dropout p=0.1 at Convolutional Block

Fig. 38. Accuracy per Class with a Dropout p=0.1 at Convolutional Block

a dropout p=0.5 at the fully connected layer. These results are
observable on Table XVI, Fig. 41 and Fig. 42.

Seeing how this showed a worse result in the training
dataset, and did not seem to cause a major improvement on
the neural network, we decided to keep the dropout value of
the convolutional blocks at 0.0.

E. MaxPooling

We have been studying the way the model behaves when
using an Average Pooling algorithm at the convolutional
block, since it was what most studies we found on a subject
had on their neural networks. However, we recently came

Fig. 39. Confusion Matrix with a Dropout p=0.5 at Fully Connected Layer

Fig. 40. Accuracy per Class with a Dropout p=0.5 at Fully Connected Layer

TABLE XVI
ACCURACY AND COST RESULTS WITH A DROPOUT ON BOTH LAYERS

(P=0.1 FOR CONVOLUTIONAL AND 0.5 FOR FULLY CONNECTED)

Set Accuracy Loss
Train 0.95409334 0.15275168954068166
CV 0.9807423 0.08008680828443034
Test 0.935867 0.3276625476774604
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Fig. 41. Confusion Matrix with a Dropout on both layers

Fig. 42. Accuracy per Class with a Dropout on both layers

across a study talking about the max pooling algorithm. The
pooling algorithms differ in how they choose the new value
to replace a 2x2 matrix of values: the average pooling would
average all values, while the max pooling will return the
greatest value.
We decided that it would be interesting to use this algorithm
to see how the behaviour of the network would change. These
results are shown on Table XVII, Fig. 43 (the confusion
matrix) and Fig. 44 (for the accuracy per class graph).

We see here the accuracy on the more underrepresented
classes were greatly improved, and we have reached a new

TABLE XVII
ACCURACY AND COST RESULTS WITH MAXPOOLING

Set Accuracy Loss
Train 0.98355013 0.05397802045190214
CV 0.98622626 0.07530226532331012
Test 0.9476643 0.35066120557064673

Fig. 43. Confusion Matrix with MaxPooling

Fig. 44. Accuracy per Class with MaxPooling
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final accuracy well above any of our previous tests.

F. Regularization

Lastly, we decided that it’d be interesting to see if adding
a regularizer to our neural network would improve our
overall results. It’s a parameter introduced to constraint the
coefficient estimates towards zero, in an effort to discourage
it from learning very complex models, which would lead to
the overfitting issue we’ve been seeing. The results obtained
were put into Table XVIII, Fig. 45 and 46.

TABLE XVIII
ACCURACY AND COST RESULTS WITH REGULARIZER EQUAL TO 0.01

Set Accuracy Loss
Train 0.96219075 0.41597348621869934
CV 0.96964675 0.4006624079308572
Test 0.92644495 0.5791669460014983

Fig. 45. Confusion Matrix with Non-zero Regularization

Unfortunately, as we can see, this did not improve our
accuracy in any way. It’s worth noting however that the
accuracy for the training and CV dataset did decrease, showing
that the model had a smaller tendency towards overfitting, even
if it’s still apparent.

VI. FINAL CONCLUSIONS AND HOW TO IMPROVE THE
MODEL

All in all, we’re pretty satisfied with our model. At the best
configurations, we managed to reach a final accuracy of 98.3%
on the train dataset, 98.6% on the Cross Validation dataset and
94.7% on the Test set. However there is still some room for
improvement.

Fig. 46. Accuracy per Class with Non-Zero Regularization

Ater analysing other articles, about models with better final
results, we saw that there are some important configurations
that could result in a better final accuracy.
For instance, a different type of model could potentially go a
long way; while we have tested small changes in our network,
we kept the same overall model, a group of convolutional
blocks, a flattening layer, and a group of fully connected
layers, but we have looked at authors who structured their
network differently, by doing three convolutional layers before
applying a MaxPool [15].
Another change could be just changing the preprocessing
steps: having better algorithms for the way data augmentation
and the way the images are being normalized [14] [2] may
have increased our overall accuracy. While we have tested for
these variable, we used very primitive algorithms that may not
have been suited for the job.
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ADDENDUM

A. Division of labor

For this work we met online via tools such as Jitsy and
Zoom. Both students collaborated an equal amount of work
hours developing all algorithms and analyzing every result in
tandem.
Diogo Silva - 50%
Pedro Oliveira - 50%

B. Relative Confusion Matrix label mistake

Due to a nomenclature mistake that we only took notice
whilst elaborating this report (at which point it was too late
to change), the sidebar’s (which shows the correspondence
between color-value) label was dubbed ”Percentage of guess
(%)”, when it should’ve in fact have been called ”Frequency
of guess”.
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