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1 Structure

This project’s code was implemented in C++ and as such, is divided into several .cpp and .h
files. Notably we have main.cpp which contains the main loop of the program (including the
renderScene and RayTracing functions), scene.cpp which has our scene’s object’s creation
and intersections, bvh.cpp which contains our BVH implementation and camera.h which
defines our camera and the methods to get the primary rays used for the Whitted Raytracer.

2 Fresnel Equations & Schlick’s Approximation

An essential part of every ray tracer is, of course, being able to simulate reflections and
refractions (indirect illumination). To complement that we also use the Fresnel effect that
defines how much the light is reflected versus how much it is refracted.
For the reflection we use the law of reflection to create a mirror reflection vector that, joined
with the hit point found beforehand, allows us to shoot the new reflection ray.
For the refraction, in order to compute the respective ray, each material has a refraction index
attributed to it. This value when joined with the ray angle of incidence, allows us to calculate
the new refraction ray with the use of Snell’s Law as the basis for the calculations.
But if we left it at that, we would be met with a problem when we ray traced a scene. The
problem would be that, in the real world, objects can reflect as well as refract light at the same
time (Dielectric Materials), and as it is that isn’t happening. To compute the ratio of reflected vs
refracted light, we use the Fresnel equations.
At a very basic level, taking the principle of the conservation of energy into account, we can
surmise that the amount of reflected plus the amount of refracted light is equal to the total
amount of incident light. Keeping that in mind, we also know that light is composed of parallel
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(Rparal) and perpendicular (Rperp) light, these two values are calculated using the fresnel
equations, and to compute the ratio (Kr), we only need to do the average of these two values to
get the ratio of reflected light. With this value Kr we can surpass the problem we had with the
previous implementation, and see reflections and refractions at the same time on the same
object.
Now, when talking about Ray Tracing, the smaller the cost of each operation the better, so we
also implemented the Schlick’s Approximation of the Fresnel equations. In this case, we
simply use the angle of refraction as 0. This of course changes the calculations that have to be
made, but cheapens the overall cost of the process by a significant margin.

3 Intersection Detection

3.1 Triangle
For the Triangle Intersection, we followed the original Tomas Moller approach in what regards
to defining each triangle by using the barycentric coordinates. This way of understanding and
acquiring an intersection point between a Ray and a Triangle is much more efficient than the
traditional geometric way, which uses the plane in which the triangle is set and then applies
some bounds. Moller’s approach only needs to store the vertices of each triangle, and not the
whole plane, and this is the key point for its higher efficiency. Since this technique is
theoretically extensive, the full walkthrough will not be displayed in this document but it is
available at:
https://cadxfem.org/inf/Fast%20MinimumStorage%20RayTriangle%20Intersection.pdf. This
document not only is pretty complete and explains the whole purpose of using barycentric
coordinates, but it was also our main reference for this task.

3.2 Plane
Our approach on the Plane Intersection method is pretty simple: We just take the equation of a
plane, the parametric equation of a Ray, and the concept that a vector that represents going
from a point P to P0 (the point that represents the “center” of the plane and with which the
normal is traced) should be perpendicular to the plane’s normal in order to assert that P is
actually part of this plane, and merge them in order to find an equation that, once solved for t
(the multiplier of the Ray’s direction), can ultimately give us the point of interception.
It is important to notice that some cautions were taken, mainly in what regards to a possible
infinite number of interception points (once the Ray perfectly aligns with the plane) and to not
finding any interception at all (the Ray being parallel to the plane). These exceptions were
attended to by dealing with the possible outcomes of the equation previously obtained.

3.3 Sphere
Just like the plane intersection method that we used, the way for us to calculate an intersection
between a Ray and a Sphere was also based on implicit geometry (describing an object by
mathematical equations). By mixing the ray parametric equation with the one of a sphere, and
then solving it in order to t (the multiplier of the Ray’s direction), we end up with a quadratic
equation that we don’t really need to solve. We just need to find this equation’s discriminants
and use its result to find the number of possible solutions, aka intersection points. There can be
up to two solutions and some particular cases (when the ray origin is inside the sphere, for
example), so we use the c parameter to understand where are located t0 and t1 (the t value for
the intersection points) and how we should understand them.
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3.4 Axis Aligned Bounding Box
For the AABB intersection test, we decided to use a straight line based approach. For this
technique, we used the mathematical equation of a straight line and mixed it with the equation
of a ray. Once again, the theoretical explanation of this technique is quite extensive, so we
advise the analysis of this article:
https://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-
shapes/ray-box-intersection, which was actually the one that we used in order to fully
understand this task and all its intricacies.

4 Ray Distribution

4.1 Antialiasing
Our Antialiasing was implemented using Shirley’s Jittering Super Sampling method. On our
renderScene method (within main.cpp), if the ANTIALIASING option is set to true, instead of
just fetching the current pixel, we instead generate X new pixels within an area around the
pixel. This X is defined by the square SPP (samples per pixel) variable. As such we are
supersampling the pixel. In order to improve the spatial distribution of our new samples we
generate them by iterating over two for loops. From a high level perspective we can think of this
as the actual pixel being at the top left of a grid of SPP x SPP cells. We then iterate over each
cell and pick a random position within it (pixel.x = x + (p + rand_float()) / SPP ; pixel.y = y + (q +
rand_float()) / SPP;). This way we ensure that our new pixel samples won’t be all clustered in
close-by positions, and are instead relatively evenly spread out. The code that implements this
is located in main.cpp starting at line 709.

4.2 Soft Shadows
Soft Shadows were implemented in two manners, depending on whether or not we are using
Antialiasing and can be activated through the SOFT_SHADOWS boolean. The overall
principle for both implementations is the same: Instead of considering the light’s in our scene as
a single point, we instead represent them as “area’s of light’, within which are several light
sources. Both implementations lie within the RayTracing function. When not using
Antialiasing, we simply take our current light and define that it as the center of a “grid of lights”
of size NO_LIGHTS x NO_LIGHTS (note this value should be the same as SPP), where each
light’s colour is defined as the original’s colour divided by the number of lights. We define the
variable size as being the total size of this grid, and as such, we can compute the distance
between each light simply by doing dist = size/NO_LIGHTS. With this, we can simply iterate
over each light in the “grid” using a couple of for loops, and incrementing the position using our
dist. We then call our processLight function (which handles checking for shadows/incrementing
the color of the pixel according to the light source). When using Antialiasing, however, instead
of a “grid of lights” we consider an area of light (of which the current light is the top left of)
containing infinite light points and simply have to pick one. Originally, all we did was pick a
random point that fell within the bounds of this area of light (whose size is again defined by the
variable size), but, in order to improve the outcome of our algorithm, we instead opted to apply
a similar technique to the Jittering used in our Antialiasing. We store the pixel’s current offsets
(i.e the current iteration of the Antialiasing’s for loops) in a global variable, and utilize it to pick a
random point in our area of light using a similar equation to the one we used to pick our pixel’s
random position (light->position.x + size * ((off_x + rand_float()) / SPP)). This way we can
ensure the uniform spatial distribution of our random light points since what we did was
basically divide our area of light into a grid, and then pick a random position within each cell.
This code can be found in main.cpp starting at line 282.
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4.3 Depth Of Field
By default, the lens of our camera is simulated as if it were a singular point, i.e, it’s infinitely
small (Pinhole camera model). To simulate DoF, we can use ray distribution to simulate a thin
lens which collects light from a cone of directions (which has its apex at the distance where
everything is in focus - Focal Plane). When the variable DEPTH_OF_FIELD is enabled in line
692 of our main.cpp we create this thin lens by first creating a unitary disk and multiplying it by
the camera’s aperture (the aperture defines the diameter of our lens, i.e the area within light is
allowed to come in). We then call a variation of our camera’s PrimaryRay function, passing it
this lens. Within camera.h (line 107) we start by computing the point where the center ray hits
the focal plane - p. With this computed point and our lens’ sample we can then compute the
direction of the primary ray so that it also passes through p. Additionally we also offset the ray’s
origin point, rather than always shooting them from the center of the camera’s eye to allow for
the Antialiasing of the points in our focal plane (i.e those that should be in focus).

4.4 Fuzzy Reflections
Fuzzy reflections were implemented by taking the reflected direction and randomizing it based
on a unit sphere and a new endpoint for the ray. They can be enabled by setting the
FUZZY_REFLECTIONS variable to true and tweaking the ROUGHNESS variable (between 0
and 1). In this case, the sphere size and fuzziness are directly proportional.Crossing over to our
code implementation, we take the ray direction that was computed to get a given object's
reflections. To that vector we had the normalization of the product of a sample unit sphere,
and the roughness value, that is basically the radius of the sphere, so the bigger this value is,
the fuzziest the reflection will be. Then when we get the new ray direction based on this, we just
create the new reflected ray using it and the precise hit point computed before.

4.5 Motion Blur
For Motion Blur, we started by creating 2 new variables in our camera.h - time0 and time1 -
which represent the camera’s shutter speed. Additionally, we also added a new variable to our
ray.h - time - which represents the instance of time at which the ray was shot (and falls
between t0 and t1). So now, if the MOTION_BLUR variable in main.cpp is set to true, on our
RenderScene function we simply set our camera’s shutter speed to what’s defined in the t0 and
t1 variables. We modified our camera’s GetPrimaryRay functions to also receive the
MOTION_BLUR bool. If set to true, when computing the primary ray, the camera also sets it’s
time variable by picking a random instance between time0 and time1 using the formula time0 +
rand_double() * (time1 - time0). To see the effects of Motion Blur we created a new object in p3f
- Moving Sphere - defined by the tag sm and a new scene - ball_motion.p3f - containing a
single one of these objects. The way it differs from a regular sphere is the fact that rather than
having a single center, it has two - center0 and center1 - representing the two positions
between which the ball moves, and also has two new variables - t0 and t1 - with t0 representing
the instant of time in which the ball is at center0, and t1 the instant of time in which the ball is at
center1. When computing the intersection with this ball, we must first set it’s “current center” by
taking into account the time at which the ray was fired, center0, center1 and the corresponding
t0 and t1 - center0 + (center1 - center0) * ((time - time0) / (time1 - time0)). We now have the
ball’s center position and can compute the intersection as if it were a normal sphere. The code
for the Moving Sphere intersection can be found in scene.cpp at line 866.
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5 Bounding Volume Hierarchy

5.1 Build
If USE_ACCEL_STRUCT is set to 2 in main.cpp, then at line 662 we call the bvh build
method (passing it a vector with our scene’s objects). Within this method, we start by setting the
root of our binary tree of nodes as being the scene’s bounding box and start our
build_recursive method which will carry on constructing this tree. Within build recursive we
have the variables left_index and right_index which correspond to the start and end index of the
subset of our object’s vector that we’re currently looking at. First thing we do in this method is to
check whether right_index - left_index (i.e the current number of objects in our subset of the
object’s vector) is smaller than a given threshold (2). If so, we create a leaf node with these
objects. If that’s not the case then we must continue splitting. To do this we first find the largest
axis of our current node’s bounding box. Then we sort our object’s vector from left index to our
right index, in accordance to their centroid positions’ value in the aforementioned largest axis.
Then we find the middle coordinates of our current node’s bounding box (according to the
largest axis). Before continuing, we check whether our first object (the one at the left index) has
a centroid that is larger than the computed middle coordinates, or if our last object (the one at
the right index) has a centroid that is smaller than the computed middle coordinates. If any of
that is true, then it means we either have an empty left or right half (respectively) and will use a
mean of the object’s centroid as mid coordinates instead of the node’s bounding box’s actual
middle. For safety we do the same check again and if true, simply set our split_index (i.e the
index in the object’s array that splits the objects within our current node’s bounds) as being our
left_index plus our threshold. Else, we perform a binary search in order to find our split_index.
The way this works is we’re constantly splitting in half our object’s vector starting at our
left_index until our right_index, and getting the coordinates of the centroid at the middle index.
If these coordinates are smaller or equal to the previously computed mid coordinates, then our
split index is in the upper half of our array, so we set our starting index to be the middle index
+1 and carry on to the next iteration. If these coordinates are bigger, than the split_index is in
the left half, so we set our end index to be the mid index. If neither of this is true, we found our
split_index and can break out. Now that we have the split_index all that’s left is to create the left
and right children. Their bounding boxes are done by taking all object’s to the left of the split
index for the left children’s bounding box, and all of those to the right for the right children’s. We
then push back those nodes (being children of our current node) and call build recursive again
to continue building starting from the left child and then from the right child.

5.2 Traversal
For traversing the BVH we start by fetching the root node - which corresponds to the “entire
scenes” bounding box. If the ray doesn’t intersect it, then we can immediately return false. Else,
we enter a while cycle in which we check if our current node is a leaf. If that’s the case then we
must check the intersection of our ray with each of the objects stored in that node (and return
true if we simply want to check for the existence of an intersection, or store the minimum
intersection distance and closest object otherwise). If our current node isn’t a leaf, then we
must fetch it’s left and right child and check our ray’s intersection with their bounding boxes. If
both hit (and they’re both closer than our current minimum intersection distance), then we set
the closest child as our current node and store the other one in a stack and go to the next
iteration of the loop. If only one hits then we simply pick that one as current node and continue
to the next iteration. If no new node was chosen from the children of the current node, or if our
current node is a leaf, we try to fetch a new node from the stack (only picking it if it’s distance is
smaller than our current smallest intersection distance). If we managed to get a new node, we
carry on to the next iteration, else we break out of the loop. If all we want is to check for an
intersection, we simply return false after leaving the loop (no intersection was found otherwise
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we would’ve already left the function and returned true during the cycle). If we want to find the
intersection point, we check whether there was a hit found or not during the loop, create the hit
point if there was and return true, otherwise return false.

6 Uniform Grid

6.1 Implementation
The file grid.cpp contains an implementation of a Uniform Grid which was provided by the
teacher. Nevertheless, before this happened, we implemented our own version of the Uniform
Grid, which was still left in the file commented under the given implementation. It contains a
method to compute the resolution of our grid and initialization of the grid’s cells and their
respective object arrays, a method to initialize the traversal parameters (i.e, the maximum and
minimum x, y and z coordinates and how much we move in each of these coordinates at any
point - step size) which utilizes the 3DDD - 3D Digital Differential Analyzer - Algorithm (which
makes use of the similarity between triangles to compute these variables), and two traversal
functions (one used for the shadow feelers, which seeks to find only whether there’s an
intersection or not, and one which seeks the closest intersection). Additionally, there are also
some support functions for getting the maximum and minimum bounding boxes.

6.2 Mailboxing
In order to further improve the Uniform Grid’s performance (which was given by the teacher
and, due to space restraints on the report won’t be further mentioned here) we implemented
MailBoxing which allows us to avoid having to check a ray’s intersection with a given object
more than once (which may happen in Uniform Grid since objects may belong to several cells).
The way we do this is pretty simple. We added two new variables to ray.h - id, which
represents the ray’s id and next_id which is static (i.e the same for every instance of the ray
class) and initialized at 0. When we create a ray, we set it’s id to be equal to next_id and
increment next_id so that the next ray will have a different id. Additionally, each object (i.e
sphere, plane, and so on) has a new internal variable - mailbox_id, initialized at -1 - When the
boolean USE_MAILBOX in scene.h is set to true, on each of the object’s intersections we
check if it’s mailbox_id is larger than the ray we’re using for the intersection’s id. If that’s the
case, this means that this object’s intersection has already been tested for this ray and hence
we can simply return false. Else, we set the object’s mailbox_id to be equal to the ray’s id, and
carry on with testing the intersection.
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