
Cooperative Agents for Rocket League using RLBot
Project Report

Diogo Silva∗
diogo.goncalves.silva@tecnico.ulisboa.pt

Instituto Superior Técnico
Lisbon, PT

Jorge Brown†
jorge.brown@tecnico.ulisboa.pt

Instituto Superior Técnico
Lisbon, PT

Tiago Melo‡
tiago.melo@tecnico.ulisboa.pt
Instituto Superior Técnico

Lisbon, PT

ABSTRACT
Team-Based Multiplayer Video Games are games which force the
cooperation of players in order to achieve a common goal, com-
monly by defeating an opposing team of players. These types of
games represent a big chunk of the current industry market and as
such a lot of effort has been dedicated into their development. A
problem they face, however, is the fact that a lot of times players
may not be able to fill an entire team, and as such, most games
employ the usage of bots to sub in for the missing human players.
Unfortunately, many of these agents are very limited and are of-
ten unable to coordinate and accomplish impromptu team tactics.
One such game where this happens is Rocket League - a vehicular
soccer game. By developing a team of agents capable of seamlessly
coordinating with each other and doing tactical squad plays we aim
to fix this issue and give human players more capable artificially
intelligent teammates capable of fulfilling the void left by the lack
of real human colleagues.

CCS CONCEPTS
•Computingmethodologies→Artificial intelligence;Multi-
agent planning; Multi-agent systems.

KEYWORDS
Multi-Agent System, Artificial Intelligence, Video Games, Team
Coordination
ACM Reference Format:
Diogo Silva, Jorge Brown, and Tiago Melo. 2018. Cooperative Agents for
Rocket League using RLBot: Project Report. In Proceedings of . ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
The evolution of the video games industry has fomented the cre-
ation of a diverse array of real-time cooperative challenges which
force players to coordinate towards a common goal. Although these
∗IST-ID: 98776
†IST-ID: 82416
‡IST-ID: 98773

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
, ,
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/1122445.1122456

multiplayer games are designed for Human-Human cooperation,
a lot of the times players may require the assistance of Artificial
Intelligent teammates in order to have a "full team" and be able to
play. This may occur due to the lack of ability for the players to find
enough colleagues to fill a team, or, more notably, due to players
leaving mid-matches, for example, due to connectivity issues.

A good representative of such games, where team play and
coordination is paramount to success is Rocket League - a 3D,
third-person perspective, soccer video game in which each player
controls a car in a team environment with the goal of scoring goals
by bumping the ball into the opposing team’s net, while protecting
their own. Although the game offers several game modes, including
a 1v1 mode, our focus will be directed towards matches of 3 versus
3 players, since these are the ones which require the most coordina-
tion and team tactics. Rocket League quickly soared to one of the
most popular competitive online sports games and has sparked the
interest of many intelligent agents developers, fomenting a healthy
community of not only players but also avid programmers who pit
their own bots against each other in organized tournaments, not
unlike those seen in Robot Soccer.

Naturally, Rocket League is a game that lends itself to diverse
team strategies and technical prowess. By developing a team of in-
telligent agents in this multi-agent system, capable of coordinating
and fulfilling team roles, we can then use our agents to play with
human players, seamlessly filling the void that the lack of a human
teammate may create. Ultimately, our goal is to develop a set of
bots capable of implementing effective team strategies and working
together to achieve victory.

In terms of implementation, the team looked into a framework
called RLBot. This tool allows, not only the development of bots
using an array of languages (such as Java, C++ and Python), but
also provides a graphical interface that allows us to load in our
bot scripts directly into the game, enabling us to play matches
utilizing our bots. Using it the team built three different bots -
Primus, Capitão and Neurocket - using different architectures
and decision making techniques in order to compare results and
touch upon few of several possible paradigms of A.I. development
for team-based games.

In terms of report structure, during section 2, we will talk more
in depth about Rocket League as a game, how it works, what the
structure of each match is and so on. For section 3 we delve deeper
into the RLBot framework, what it is capable of, what its architec-
ture is and what some of the most famous bots are (and which we
chose to pit our own bots against). In section 4, 5 and 6 we thor-
oughly describe and present statistics and results about our first bot
built, Primus, our second bots, Capitão - which employs direct

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://rlbot.org/tournament/
https://github.com/RLBot/RLBotJavaExample

, , Silva, Melo and Brown

communication and delegation between the team - and our third
bot Neurocket, which was created using Reinforcement Learning.
Finally, during section 7 we provide some conclusions and final
thoughts about our bots and their relevance,

2 ROCKET LEAGUE
2.1 Game Description
"Rocket League is a high-powered hybrid of arcade-style soccer and ve-
hicular mayhem with easy-to-understand controls and fluid, physics-
driven competition" [1]. Rocket League is a team-based robot-soccer-
like game in which teams of players controlling cars have to com-
pete against each other in order to score goals against the en-
emy’s net, whilst avoiding being scored on. The game can be
downloaded for free on the game’s Epic Games Store page
(https://www.epicgames.com/store/en-US/p/rocket-league). The game
can be played in matches of 1v1, 2v2, 3v3 and 4v4 (also called "Chaos
Mode"), but by far the most popular and most played mode, both
casually and in competitive E-Sports tournaments, is 3v3 [2] (and
as such, our bots were built to work best in this environment).

It should be noted that the game does offer bots built by its
developers ranging in level of difficulty - Rookie, Professional and
All-Stars - and these were used as a baseline of performance for
our own bots. However they are very lacking, especially when
compared to bots built by RLBot’s Community [3], both in terms
of aptitude (lacking the ability to perform advanced moves like
Speedy Kickoffs and Aerials) and coordination.

2.2 Player Movement and Controls
Rocket League is a game that employs pseudo-realistic physics.
Players drive around in cars (of which there is a variety of, each
with slightly different steering) the field. In terms of baseline in-
puts, players can accelerate, decelerate (and drive backwards),
jump, double jump, tilt their car while in the air (which, when
combined with the double jump, allows for things like front flips
which increase the car’s velocity) and boost.

The car’s velocity has a capped limit which can only be over-
written temporarily when boosting. Additionally, to use the boost,
players need to have enough fuel. Fuel goes from 0 to 100 and is
only used when boosting. Players can get more fuel form certain
"boost pads" which are scattered across the map and that either fully
or partially refuel the player’s car.

The player can perform a jump and then, whilst in the air, per-
form a second jump which further increases the car’s altitude. The
double jump is recharged each time all four wheels of the car touch
a surface (be it the floor, wall or ceiling).

In terms of driving, the games’ matches take place in a closed off
field (as seen in the following section), meaning that there are walls
and a ceiling surrounding the field on which the player can drive
(granted they have enough speed. The cars have a certain amount
of grip which allows players to drive on walls with some ease, but
this does not apply to the ceiling since the player can only drive on
it very momentarily before starting to fall. If two cars collide they
either bump off of each other, or if one of them is moving at a very
high speed, the one with lower speed is demolished, being removed
from the field for a few seconds - we call this demolitions.

All of these baseline inputs can be combined to perform advanced
movements such as WaveDashes and SpeedFlips, giving the game a
very high skill ceiling and allowing players to exploit the physics
engine to benefit themselves and their team. Of special importance
areAerials. By combining the usage of boost, car tilting, jumps and
mechanical skill the player is able to "fly" around, giving the game
a whole new dimension of vertically. This technique is not easy
to perform initially, with many new players struggling to control
their cars midair, but it is second nature to more professional and
advanced players as seen in figure 1.

Figure 1: Example of a car performing an aerial to hit the
ball before it hits the ground.

2.3 Environment
Rocket League takes place in 5 minute matches. Each player in the
team is placed in one of several preset starting positions which
vary in distance to the ball (with both teams mirroring each other).
The ball is placed statically on the center of the field. After a team
scores the world is reset back to this initial state of "kickoff".

In terms of the field, the game takes place in a closed off arena
with dimensions (measured in in-game units) of 4096x5120x2044
and with walls and a ceiling on which the player can drive. There
are several boost pads in predetermined locations which are re-
instanced after being picked up after a given time. The overall
layout of the map can be seen in figure 2.

Figure 2: Overview of the field where Rocket League
matches take place.

For a full categorization of the environment, we can say that it is
Multi-Agent, Stochastic, Sequential, Dynamic, Episodic and
Partially Observable.

https://www.epicgames.com/store/en-US/p/rocket-league

Cooperative Agents for Rocket League using RLBot , ,

3 RLBOT
3.1 Framework Description
RLBot is a framework which allows for the development and direct
injection of custom made bots into Rocket League in a variety of
programming languages, of which we chose Python. This frame-
work is fully endorsed by Psyonix (the developers of the game)
and only permits bots to be used in offline or LAN (local) matches.
Additionally, RLBot also provides debugging tools, allowing bots
to display messages and figures (lines and other polygons) for de-
velopers to better understand why each agent is choosing to do
it’s play. The framework even permits their visual configuration
(using the wide range of cosmetics available in Rocket League)
and can be installed following the tutorial in this https://rlbot.org/
(https://rlbot.org/).

Figure 3: The GUI of the RLBot framework which allows for
matches between bots to be created.

3.2 Extra Packages
Besides providing some out-of-the box utilities, there are also sev-
eral packages that can be added to further increment RLBot’s capa-
bilities. Of note we haveRLUtilitieswhich provides extra informa-
tion about the game’s current state and a lot of linear algebra and
vector calculus methods. Additionally, RLBotTraining allows for
the creation of training scenarios which can be used to test out the
bot’s reactions and their plays in a controlled setting (rather than
during the chaos of a real match). Finally we have the extra software
used for reinforcement learning: RLGym[7] which is an OpenAI
Gym-style environment for Rocket League and TensorFlowwhich
is a machine learning library.

3.3 Well-known Bots
RLBot has a booming and very much alive community of members
and developers which organize tournaments, discuss strategies and
share a passion for creating AI for this game. Included in the RLBot
framework are some of the bots the community has already created
and that can be used to pit our own bots against. Figure 4 showcases
some of these bots and their overall ranking of ability (S being the
best).

Out of these, we handpicked a few to test our bots against:
• Diablo - An A-Tier bot built in Python capable of a lot of
agressive plays.

• Botimus Prime - An S-Tier bot built in Python with both
1v1 and 3v3 strategies and a lot of handmade maneuvers
achieving a well-balanced mix of defense and offense.

Figure 4: Ranking of the included bots made using RLBot.

• ReliefBot - An S-Tier bot built in Java which actually em-
ploys intra-bot communication and coordination.

• Psyonix AllStars - Whilst included in the RLBot install,
these are actually the game’s default bots (built by the game’s
developers) at their highest difficulty. They were not made
using RLBot and hence have no ranking and were used as a
baseline of performance.

4 PRIMUS
4.1 Description
The first bot we built was dubbed Primus and it was built using
Python with RLUtilities for linear algebra computations and some
ball prediction/simulation features. It’s a very standard bot in terms
of implementation compared to other RLBot bots such as Botimus
Prime and Kamael (which were the primary inspirations for Primus’
behavior). Figure 5 showcases the physical appearance of Primus
in-game. A full-match between Primus and ReliefBot can be
found at https://www.youtube.com/watch?v=Y0trXzKRuYI.

Figure 5: Primus’ appearance when on the blue team.

4.2 Architecture
At its core Primus is a fairly complex Reactive Agent with pred-
icate logic inserts. The way it works is the agent has, at all times,
a Play that it is trying to perform. When a play is finished or
something calls for it to be interrupted (for example an emergency
situation like avoiding being demolished might call for it to stop
what it’s doing in order to prevent death), the agent analyzes the
current environment (stored within theGameInfo) to choose what
to do.

Primus does not employ explicit communication with its peers.
Instead, it assumes that all of its teammates are rational, able
to contribute to the team without communication and smart to
the point of achieving implicit team play (e.g it assumes that its
teammates know when they should stay back on defense, or be
more aggressive). An advantage to this is that it allows Primus to
play with other bots or even humans without any issues. It should
be stated that even without explicit communication, emergent team

https://www.youtube.com/watch?v=Y0trXzKRuYI

, , Silva, Melo and Brown

plays do arise, like one of the bots setting the ball up, whilst the
other waits and switches out at the right time.

4.3 GameInfo
We dubbed the class that stores the current environment’s state as
GameInfo and is responsible for reading the packets received from
the game and updating it’s own information. Each agent has its own
GameInfo storing information such as what the agent’s team index
is, what are its teammates and opponents, what’s the position of it’s
net and the opposing team’s, whether the agent’s team has scored
or got scored on (in order to reset the episode), what the position
of each of the boost pads is and whether or not their active (stored
in a Pad object) and possibly most important, an array containing
several predictions of where the ball will be within a threshold of
time and with a step delay between predictions. Additionally it also
possesses support functions to detect collisions between cars and
predict car positions similarly to the ball predictions.

4.4 Plays
The agent’s actions were dubbed Plays and they employ rather
complex behaviors that allows Primus to interact with the envi-
ronment. All plays derive from a base Play class and they can even
be composed of several other plays or inherit from other plays.
Each play has a sequential set of actions to perform and contains a
step function which sets what the agent’s controls should be (i.e
what input to perform such as accelerating, steering, and so on)
at the current step of the play’s execution. They also all have a
finished flag which is set when the play has finished executing and
a method to check whether or not they can be interrupted. Plays
can be subdivided into Strikes, Defensive, Kickoffs, Dribbles,
Utility and Actions. It should be noted that the specific controls
that each play outputs at each given time had to be set manually
and as such the team allocated a lot of time into creating these
plays. The full list of available actions can be found in Appendix
A.

4.5 Decision Making
Primus’ decision making is three-fold and was very much inspired
by professional player’s decision making and conditional reasoning.
Firstly, during the getOutput main loop, Primus checks whether it
has a play selected. If not, then it calls the choosePlay method which
is responsible for analyzing the current state and pick the most
appropriate play. If not, then Primus starts by checking whether it’s
in a collision course with another car. If so, and if it’s current action
can be interrupted, then it’ll drop the current play and do a double
jump to avoid the collision. If no collision is abound, then Primus
performs the next step in it’s current play, assigns the controls to
the play’s output, and checks if the play has finished. If so, then it
calls choosePlay again.

Within the choosePlay method is where most decision making
takes place. This method works in a "decision flowchart" fashion,
choosingwhat to do based on the state. First if the agent is not on the
ground, it’ll pick the Recovery play in order to land safely. Then,
it analyzes the ball’s and team’s positions. If the ball is perfectly
on the center, this means we’re in a Kickoff. In this case, Primus
checks all its teammates. If it’s the closest to the ball, it’ll pick which

kickoff to perform (based on its distance and angle to the ball). If
it’s the second closest, it’ll go Refuel and in case it’s the farthest
away, it’ll GoToNet (getting small boosts along the way), in order
to prepare for a defense.

After kickoffs, Primus’ second priority is to get boost if it’s low
on it. Otherwise, it’ll create some ball predictions and compute all
likely interceptions both it’s team and it’s enemies’. It then checks
if the best intercept is his and if so, it’ll pick which type of strike to
make (if in position to strike, otherwise it’ll pick a clear instead),
based on both on it’s and the enemies’ distance to the net and
ball. The third fold of decision comes from deciding which of the
possible interceptions is best. This is done using predicate logic
(each possible strike has a predicate that states whether or not the
agent should go for it), and using lookup tables containing combos
of boost and throttles to compute the goodness of the interception.
This is why Primus’ behaviour can be classified as pseudo-hybrid.
It’s reactive at its core, but it does employ a small mix of lookups
and predicate logic into it’s decision making.

Continuing the decision flow, Primus checks if it’s the closest to
it’s own net. If so, and if there’s a lot of enemies on it’s side of the
field, it’ll go to net. If the ball is dangerously close to the net, it’ll
clear it, otherwise, it’ll prepare for a setup at a safe distance. If it’s
not the closest to net, it’ll just go setup to wherever it thinks there
will be an interception opportunity (based on the ball predictions).
Full decision trees to better visualize Primus’ decision making can
be found in Appendix B.

4.6 Results
For benchmarking, two types of tests were performed. Initially,
when debugging each play as it was being implemented, the team
created some RLBotTraining scenarios, specifically for defense,
offense and kickoffs. This was mainly done for debugging and
at this point Primus still did not have any decision making. For
actual tests and performance, we pitted Primus against other bots
in 3v3 matches. In particular, we had Primus face off versus, in this
order, Psyonix All-Stars, made by Rocket League’s developers,
Botimus Prime, which has a similar structure to Primus, Diablo
a very offensive-based bot and ReliefBot which employs explicit
intra-agent communication. The first set of bots was chosen since
they’re the best the game has to offer by default. The remainder
were chosen due to their ranking within the RLBot community and
number of tournaments they won in the 3v3 category.

Overall,Primus obtained an 84.3%win rate (20 out of 24matches).
It won all matches against both Psyonix All-Stars and Diablos with
quite a margin of goals (around 8 goals of difference per win). This
indicates that Primus can consistently perform at minimum "A-
Tier" within the RLBot community. Looking at the graphs produced
(available in Appendix C), we can tell that both these bots strug-
gled to keep up with Primus’ agression, noted by the fact that most
score attempts ended in a goal. When pitted against Botimus and
ReliefBot, both S-Tier bots known for their astounding performance
in 3v3 matches, Primus put up a good fight, and achieved a 66.6%
win rate against them, managing to beat them in most matches, but
still suffering a few losses. Still, with this we can confidently say
that Primus can play and win against "S-Tier" bots, the high-
est tier in the RLBot community. These bots are much more

Cooperative Agents for Rocket League using RLBot , ,

well-rounded and can actually both save and prevent Primus from
making shot on goal attempts better than the latter two. This re-
sulted in much more even matches. More in depth statistics such
as number of shots and saves can be found in Appendix C.

During plays we noted that where Primus mainly faltered were
defensive maneuvers. This, however, seems to be an overall issue
with most bots. There is one exception in the RLBot community
- the bot St. Peter - but this is a specialized goalie bot who has
no attacking plays and was designed to sit on net all match just
blocking shots. Other than that, Primus excelled at attacks and was
able to pull of a decent level of team play and apparent coordination,
but there were moments where due to syncing issues two bots
would go for the ball at the same time even when they shouldn’t. In
an attempt to avoid this, we moved on to our next bot - Capitão.

5 CAPITÃO
5.1 Description
Once we had a well-performing bot with implicit deliberation with
its peers, we set out to design and develop a bot capable of assigning
tasks explicitly, leveraging off of RLBots’s communication modules
and using message protocols. As might already be obvious to the
reader, Capitão conceptually maps to a pirate crew. There is an
indisputable leader responsible for sending "stances" to its Maru-
jos which, programmatically, are also instances of Capitão, but for
ease of reference will henceforth be declared as such. Traditional
team-based decision making like voting schemes would be prone to
a lot of overhead in message passing and would most likely result
in delayed decisions. We have come to realize that given the ex-
tremely dynamic nature of our environment, such strategies could
very easily hinder the performance of an explicit communication
teammodel: by the time the team had come to a consensus, it would
already be too late. By agreeing on who the leader is beforehand,
this negotiation is shifted to the beginning of the game, which is
usually just the countdown, and so has a lot less impact on each
agent’s performance. On the other hand, having a clear leader cen-
ters deliberation on a single agent, which can lead to performance
issues as the number of teammates increases. We find that, for the
tested examples, a team composed of 3 Capitão Bots is still able
to perform reasonably well, as discussed ahead. A sample match
between Capitão and Diablo can be found here.

Figure 6: Capitão’s appearance when on the orange team.

5.2 Architecture
The emphasis of this bot lies on the communication between differ-
ent instances, aswell as testing delegation and assignment strategies
by a single entity. As such, this bot does not offer new mechan-
ics or actions, in the sense that it employs the same actions as

Primus. We can decompose the core architecture of Capitão into 3
major blocks: policy, strategy and actions, as suggested by Figure
16. Much like Primus, Capitão is a hybrid, vertically layered and
stateful agent. It selects an action that it is trying to perform at
every game tick and, when it finishes or the action is interrupted,
the agent re-evaluates the assumed state (henceforth referred to
as "stance"). Just like Primus, it collects and updates information
about its environment using GameInfo packets, which can hence
be considered its sensors. In a broad sense, since every agent has
access to the same information about the game, the leader Capitão
is able to perform as much of an informed decision as any other.
That being said, the leader uses a policy to decide upon its own and
its Marujos’ stances. Using this stance and the current action, each
agent is then able to update its own action if possible or, otherwise,
store the stance and, once available, start performing the action it
was tasked with.

It is alsoworth highlighting the structure of Capitão’s get_output
function which is called by the frameworkmany times per second to
fetch an agent’s controls. It starts by updating Capitão’s inner state
of the game, which is recorded using an object of type GameInfo:
teammates and enemies’ positions, ball position, direction and pre-
dictions, and so on. This ensures the agent is up to date with the
fast-changing environment and is not using stale information to
deliberate. Afterwards, the agent decides whether or not it should
change it intention. Being in a fast-paced, dynamic environment
Capitão adopts an open-minded commitment, in the sense that it
only pursues actions while they are possible and make sense. Thus,
we consider two scenarios in which it is worth to change intentions:
whenever a car touches the ball and if the ball is entering a "danger
zone". Car touches on the ball change its trajectory, demanding
a re-evaluation of the plan. As for the latter scenario, should an
agent notice the ball is too close to the goal, it breaks free from
the General Defense and re-evaluates. Once it has re-adjusted its
own strategy, Capitão prepares assignments. Afterwards, if there
is no action selected, Capitão will assign a stance to himself and
his fellow Marujos using the policy using TMCP. According to the
selected stance, each agent will then select the corresponding action
using his strategy. Lastly, the action is executed, returning a set
of controls that are sent to RLBot, which promptly sends them to
Rocket League.

5.3 Communication
Communication between agents is achieved using Matchcomms
[4], a low level system that allows broadcasting messages between
participants in a match supported by RLBot. Put simply, Match-
comms is a server that is also ran whenever the RLBot framework
is running, exposing asynchronous websockets which allow for
the exchange of messages between all the participants in a game.
Whenever a message is received, the server ensures it is broadcast
to the remaining players, as represented in Figure 7.

A layer above Matchcomms lies TMCP - Team Match Commu-
nication Protocol. TMCP is an attempt at standardizing inter-bot
communication [5], supported only by Python bots. Relying on a
JSON server, TMCP supports sending a pre-defined set of JSON
messages, with only a few alterable parameters. The envisioned

https://www.youtube.com/watch?v=yG4KzQlEAUc

, , Silva, Melo and Brown

Figure 7: Matchcomms architecture diagram.

use-cases when Matchcomms was designed were primarily noti-
fying other bots of one’s own intentions, which resulted in only
a few very specific types of messages to be developed like mani-
festing interest in going for the ball, a boost, a demolition and so
on. This is the antithesis of what we are trying to achieve: a bot
that lets other bots know what they should be doing. Furthermore,
we do not wish to send the same message to everyone, which also
conflicts with the broadcast implementation offered by RLBot. The
first priority was to allow targeted messages between the Capitão
and a given Marujo: the leader should be able to tell the right bot
what it should be doing. This required overriding the meaning of
index already supported by TMCP. As such, whenever a bot re-
ceives a message it checks if it is meant for him: if the message’s
index is his own and the team from the sender is his own. We ig-
nore the fact that it is possible to spoof Capitão messages for our
current version (id est, an enemy player impersonates the enemy
Capitão and purposely sends bad stances to the enemy Marujos).
Afterwards, it was time to delegate specific stances. Distinctions
between defenses, assigning kick-offs and strikes demanded us to
create a new set of macro variables. Every TMCP message sent
is of the type BOOST, and the payload contains the macro for the
stance to be assumed. This is one of the main reasons why we chose
stances: macros (which boil down to just integers) are far easier
to send than Action classes, which would require serialization and
would mean larger messages. Currently, Capitão is able to assign
ATTACK, DEFENSE, BOOST, CLEAR, PREEMPTIVE_DEF stances to
its Marujos. Moreover, TMCP advises to only send a packet when
something has changed., and this is enforced by not allowing mes-
sages to be sent unless the time difference is superior to 0.1 seconds.
So, Capitão keeps a tab of last assigned stances, and only sends
messages should they be updated. However, this cannot hold for
a stance such as the Kickoff given each bot has a varying initial-
ization time. This poses a major problem at the beginning of each
match: since some bots are instanced before others, some queues
take longer to be ready and messages that are sent in this time
span are not received. So, at the beginning of each match, when
Capitão may delegate Kickoffs to Marujos that were not ready yet.
To circumvent this, every Marujo assumes an UNDEFINED stance
when instanced, and will be stuck consuming messages until this
state is changed. On the other hand, Capitão will frequently send
Kickoff messages to the right Marujo during the Kickoff pause,
ensuring someone is tasked to kickoff the ball. Nonetheless, it is
worth highlighting that in some situations (although rarely, as seen
in the clip) Marujos do not Kickoff. They still read stale messages or

begin the round by continuing the last assigned action. This occurs
when the message queue still has messages respective to the last
round or the last action was not interruptible and they are "forced"
to finish it before taking on a new one. We consider this to not be
much of a problem given its low frequency.

Lastly, for the topology of the "network" we decided to adopt a
publisher subscriber strategy. As a general rule and in order to avoid
a single agent having to send and receive messages on every game
tick, the Capitão is only responsible for sending actions and each
Marujo is only responsible for receiving and parsing them. This
way we can easily include a section in the main loop in which all
communication is done and depending on the role each agent has
act accordingly. As hinted in the previous section, using its policy
the Capitão will assign a high-level stance to each agent in its team.
Then, iterating over every car (identified by index) in his team, it
can send the corresponding stance if needed or, if the index matches
his, just update his own stance and prepare to act accordingly.

5.4 Roles
As mentioned, every instance is running Capitão code but depend-
ing on whether they are the leader or not, each agent will display
different behavior. Nevertheless, we believe a Capitão should also
be a (albeit privileged) Marujo, in the sense that the way they select
an action based on a given stance is the same. To sum up, every
agent is both a Capitão by name and a Marujo by structure/code.
The core difference is that only of the agents is actually the leader.
As for nominating the leader, the agent with the smallest index in
the team is considered the Capitão. It is worth noting that this in-
formation is not publicly known the moment an agent is instanced:
there is still a need for some information exchange. As such, each
agent assumes he is the captain until proven otherwise. Only when
everyone receives their first GameInfo packet they have access to
the indices of their teammates, allowing them to adjust. Once they
realize there is someone above them in the hierarchy, they send
him an acknowledgement and update their status. This is also par-
ticularly tricky when the game begins: the agent prepares to assign
Kickoffs and (since there needs to be a 0.1 second delay between
messages) only a few ticks later it realizes that it is not his job to
assign but rather to be assigned. However, we believe our current
implementation deals with this just fine, given the details discussed
in the previous section.

5.5 Decision Making
When discussing Capitão’s decision making, it is worth covering
both the policy of the leader and the policy of each Marujo. As-
signments are done by associating an agent’s index with a stance,
and iteratively instancing and forwarding the appropriate mes-
sages to the teammates. The leader policy delegates the closest
element to perform the kickoff. Should two agents have the same
distance between themselves and the ball, both go for it. Marujos
have the responsibility of picking the right Kickoff action (between
SpeedFlipDodgeKickoff and SimpleKickoff). Every agent that is not
responsible for kicking the ball off is assigned to General Defense.
To delegate strikes or clears, the captain starts by calculating the
possible intercepts of the team and selects the best. If the Capitão
figures the enemy can intercept the ball sooner than the teammate

Cooperative Agents for Rocket League using RLBot , ,

with the best interception, that teammate is assigned to assume a
preemptive defensive stance. Otherwise it assigns a clear or strike
stance depending on how well aligned the interception is with the
enemy goal. It is worth highlighting that the Capitão never assigns
two agents to perform a strike or a clear. This is extremely useful
to prevent bumps and clunky, undesirable hits on the ball. If the
leader fails to find an appropriate interception for a given Marujo, it
tasks it with replenishing its boost or assuming a general defensive
stance, depending on its available boost level.

As for Marujo’s, as it has been hinted before, in order to save
precious computation time in the Capitão each Marujo has been
granted some level of independence. In other words, whenever they
are assigned to do a clear of the ball or strike, they are free to choose
the best fit. Moreover, they do not need to wait for the Capitão’s
orders to break out of a General Defense stance in case the ball
gets dangerously close to their own goal, as previously mentioned.
More importantly, Marujos are able to keep themselves on their
feet, in the sense that whenever picking an action, regardless of the
adopted stance (except for Kickoff, since they were often recovering
halfway through) they assume a Recovery action if the car is not on
the ground. As for strikes and clears, in broad terms each Marujo
considers his orientation, height, direction and speed of the ball as
well as how close the ball is to the enemy goal to select between a
Close Shot, a Ground Shot, an Aerial Strike or a Mirror Strike. As for
clears, it simply chooses between a Dodge Clear or an Aerial Clear,
depending on how quickly the intercept can occur. When snapping
out of a defensive stance to try and clear the ball, since agents do this
without any orders from the Capitão it is very possible that bumps
and clunky hits occur. We decide that in such dangerous situations
it is better to adopt a "better safe than sorry" mentality and opted
to keep this policy. Additionally, it has been empirically noted that
these scenarios occasionally lend themselves to interesting Marujo
interactions, such as combined clears.

5.6 Results
To benchmark Capitão, we are interested not only on evaluating
how well it performs as a general Rocket League bot, but also in
witnessing team behavior and measuring coordination. As such, it
has been tested against Pyonix Allstar, Diablo and Botimus Prime.
The game results have been recorded, as well as some metrics that
should give us a better understanding on how well it is performing.

Looking at the game results and charts in 7, there are a couple
of key observations that ought to be highlighted. As it was to be
expected, as the skill of the opposing bots increases, the percentage
of time the ball spent in Capitão’s field increases as well, which
generally translates into poorer results for Capitão. Moreover, we
also notice some similarities between the shapes of the statistics
generated by All-Stars and Diablo, meaning that Capitão is able
to perform reasonably well against opponents from Psyonix and
A-tier bots. Perhaps more importantly, we can clearly see Capitão
struggles against Botimus Prime, even having an average of 1 own
goal per game. We thus infer that against more sophisticated bots,
clunky behavior can start to become a problem, and sharp coordi-
nation becomes more of a need. Although the percentage of time
mirrors the match against Diablo, the statistics tell a different story.

Despite only winning 50% of the games, Capitão is still able to per-
form a decent amount of strikes, of which most were well directed
to the goal. Capitão also displays a level of assists equal to Botimus’,
which possibly means it relies more on its teammates to score goals
against more complex enemies, as expected. We would like to fi-
nally point out that we consider these results acceptable, given the
large overhead that explicit communication is when compared to
its implicit counterpart. It is easy to expect that a "decentralized"
bot with no messages and negotiation with its peers to be simpler
and, as such, generally better.

6 NEUROCKET
The final agent we developed is calledNeurocket and it was imple-
mented via Reinforcement Learning. As programmers, as soon as
we started this project, we knew that the only way for our agents
to reach a performance level similar to the highest levels of play
would be via reinforcement learning. With that in mind the first
approach was to try to use the algorithm we are most familiar with,
Q-learning[12].

6.1 Q-Learning
The Q-Learning, in essence, consists in the mapping of a State-
Action pair to an expected value. Traditionally these mappings
are stored in a States x Actions matrix. However, Rocket League’s
environment is continuous, which means that we would need to
have a matrix with an infinite number of rows, which is impossible.

The first solution to this problem that came to mind was to
discretize the state space so that the number of states would be
finite. However, given the high amount of variables associated with
the environment, especially in 2v2 or 3v3 modes, it would require
an extremely high amount of memory to hold a matrix so big. This
can be mitigated by doing a coarser discretization, however the
information loss was too high to get a small enough state space.

The second solution was to turn to Deep Q-Networks.

6.2 Deep Q-Networks
Deep Q-Networks(DQN), originally developed by DeepMind to play
Atari games[8], are an adaptation of regular Q-Learning where the
matrix is replaced with a neural network which makes training in
continuous environments much more straightforward.

The DQNs developed by DeepMind were done with a goal in
mind, to have the same input(pixels) in all of them in order to
preserve the network’s architecture in between games. In our case,
since the RLBot framework allows us to have direct access to the
game state, our inputs are the actual state of the game and not what
it has rendered.

Luckily the RLBot community has developed an OpenAI Gym-
style[6] environment for reinforcement learning in Rocket League[7],
called RLGym, however, unlike the OpenAI gym environments we
need to build what they call an ObservationBuilder, which is an ob-
ject that maps the game state to our network’s input, and a reward
function.

6.2.1 ObservationBuilder. The first instinct when implementing
the ObservationBuilder is to simply concatenate the multiple vec-
tors that describe the ball and the players. However, one needs
to take into the account the fact that different players can be on

, , Silva, Melo and Brown

different teams. For example, if a player in front of the blue team’s
goal scores a goal it will get a very high reward and so now the
model will try to score if in that position again, but, if a player is
in that same position but is from the blue team we don’t want it
to try and score because that would result in an own goal. What
this ends up meaning, is that for one of the teams the input values
must be mirrored in order to avoid this issue. After mirroring, we
can concatenate all the vectors like we intended to originally.

6.2.2 Reward Function. The reward function is one of the most
important components of reinforcement learning since it is what
will guide the agent’s behavior in the future.

Typically, reward functions with frequent and not very signifi-
cant rewards will lead to sub-optimal agents, even if slightly faster,
than sparser and more significant rewards. That being the case, we
decided to not reward the agent for minor things like touching the
ball or driving towards it, but to reward more meaningful events
like goals, saves and shots and to punish getting scored on.

6.2.3 Network Architecture. The network architecture consists in
2 hidden layers and one output layer with the hidden layers being
fully-connected and consisting of 256 units using a Rectified Linear
Unit(ReLU) activation function and the output layer being a fully-
connected linear layer with an output to match each possible action,
similar to DeepMind’s architecture for beating Atari games[8].

Experimentation with other architecture and parameter varia-
tions were not possible due to some issues encountered. This will
be discussed in section 6.4.

6.3 Using replays
Rocket League has a built-in replay system that allows games to
be saved and replayed at a later date. The format of the replay
files consists in a log file of the server that hosted the game, which
allows us to obtain the full state of the game and all the input given
by the players in a given timestamp if we parse it correctly.

The website ballchasing.com is an online replay archive where
25,882,778 replays are stored at the time of writing, which equates
to, considering the game time of 5 minutes, 129,413,890 minutes of
Rocket League gameplay to learn from. Even if we limit the replays
to the only ones of games of the highest rank in the competitive
ladder, we still obtain over 10,000 results.

To utilize all this information, it is necessary to parse the replay
files and then to use an imitation learning[9] algorithm. The parsing
of the files can be done using a library like oxrock’s TrainingDataEx-
tractor that allows us to turn the low-level .replay file into a higher
level representation that we could use to feed an imitation learning
algorithm.

6.4 Time constraints and hardware issues
Since the Rocket League environment is a complex environment the
training time for a competent agent is massive. By lack of expertise
in deep reinforcement learning field and lack of proper hardware it
was impossible to arrive at an agent of meaningful skill.

Although, we installed all the required drivers and libraries for
TensorFlow to utilize the GPU of the computer, its utilization did
not go above 5% which seems too low for proper functioning, but
it did fill up the 8 gigabytes of dedicated memory. Looking up

the problem online didn’t yield any meaningful results so we are
not sure if the processing power of the GPU is supposed to be
left unused. In the end, this meant that each game tick took our
application approximately 5 seconds to process which meant that
we were unable to reach a single satisfactory model, much less try
out different parameters and network architectures. We could have
taken a different approach and worked with stacks of game ticks
instead of processing them as they come, but the initial goal was to
obtain a baseline model to then experiment upon and optimize.

The lack of a model to compare to and the required research on
a completely new topic, meant that there wasn’t much incentive
to dive deeper into imitation learning techniques even though we
think there could be a big potential gain by following that route,
especially if a hybrid approach was taken where the agent would
first be trained via imitation and then via reinforcement learning.

We believe that if we had familiarity with the TensorFlow frame-
work and some real experience with training reinforcement learn-
ing agents in a high complexity environment, some of our issues
would probably have been avoided and it could have been possible
to reach at least one functioning model.

7 FINAL THOUGHTS
In the end, Primus ended up being the best bot in terms of raw
performance. Whilst both Capitão and Neurorocket’s implemen-
tations have their advantages, the rule of "keeping it simple" proved
true. In fact this holds true for most video games. One of the reasons
machine learning, for example, isn’t too common place in the de-
velopment of commercial video games is due to it’s complexity and
unpredictability especially when faced with complex and dynamic
environments. Moreover, situations like kickoffs lend themselves
to "hard coded" rules. Perhaps a hybrid of reinforcement learning
with some pre-coded situations could’ve worked well given enough
time to train. Looking at Capitão’s architecture, the idea of hav-
ing a "team captain coordinating all others" does intuitively seem
effective, but having an agent having to keep track of all other’s
and effectively give out orders to others does overload it with a
lot of strain due to all predictions that must be made, which may
lead to some less than optimal behaviors. The biggest struggle for
both Primus and Capitão, was the creation of Plays, due highly
in part to the "realistic" physics engine of Rocket League. Without
RLBot’s community and documentation, this would have been nigh
impossible. Still we ended up with a good fleet of bots, some S-Tier,
others a bit worse, but all of them ready and excited to compete.

REFERENCES
[1] Psyonix, Rocket League store page, Sep 23, 2020
[2] Liquidpedia, Main page listing an assortment of Rocket League professional tour-

naments, May 19, 2021
[3] Max Thielmeyer, ’Rocket League’ Players Are Competing To Create The Most

Skilled Bot, Oct 18, 2018
[4] Eric Veilleux, Matchcomms, Mar 29, 2021
[5] L0laapk3, Team Match Communication Protocol, Mar 29, 2021
[6] OpenAI, Environments for reinforcement learning
[7] RLGym, OpenAI Gym style environment for reinforcement learning in Rocket

League
[8] DeepMind, Playing Atari with Deep Reinforcement Learning, Dec 19, 2013
[9] Hussei, Gaber, Elyan, Jayne, Imitation Learning: A Survey of Learning Methods
[10] Dominik Schmid, RLBotTraining’s code repository
[11] RLBot Community, RLBot’s Wiki
[12] Watkins and Dayan, Q-Learning

https://www.ballchasing.com
https://github.com/oxrock/TrainingDataExtractor
https://github.com/oxrock/TrainingDataExtractor
https://www.epicgames.com/store/en-US/p/rocket-league
https://liquipedia.net/rocketleague/Main_Page
https://liquipedia.net/rocketleague/Main_Page
https://www.forbes.com/sites/maxthielmeyer/2018/10/17/rocket-league-players-are-competing-to-create-the-most-skilled-bot/?sh=7656272b48a7
https://www.forbes.com/sites/maxthielmeyer/2018/10/17/rocket-league-players-are-competing-to-create-the-most-skilled-bot/?sh=7656272b48a7
https://github.com/RLBot/RLBot/wiki/Matchcomms
https://github.com/RLBot/RLBot/wiki/Team-Match-Communication-Protocol
https://gym.openai.com/
https://rlgym.github.io/
https://rlgym.github.io/
https://arxiv.org/pdf/1312.5602.pdf
https://core.ac.uk/download/pdf/141207521.pdf
https://github.com/RLBot/RLBotTraining
https://github.com/RLBot/RLBot/wiki
https://link.springer.com/content/pdf/10.1007/BF00992698.pdf

Cooperative Agents for Rocket League using RLBot , ,

Appendix A - Primus & Capitão Actions Table

Jump Makes car output a jump
AirDodge Double Jumps in a direction

SpeedFlip Advanced corkscrew flip used to
gain speed and hit the ball

HalfFlip

Quickly reverses direction by
double jumping and tilting the
car so it lands facing the oppo-
site direction

AimDodge Quickly turn/flip towards target
while not touching the ground

Drive Drive in a direction at given max
speed. Can also drive backwards

AdvancedDrive
Travel to target and use halfflips
and wavedashes to gain speed if
necessary

Arrive Arrive at target in given time
Stop Stop and stay still

SimpleKickoff Drive to ball and front flip.
SpeedFlipDodgeKickoff Fast kickoff with speed flips.

Strike Base strike class. Hit ball towards
position

BumpStrike Bump ball towards enemy net
DodgeStrike Strike ball by flipping into it
CloseStrike Strike ball by lightly flipping it

SetupStrike Strike ball against wall so it
bounces to a given position

DribbleStrike Dribble ball and flip it when ap-
propriate

Dribble Dribble ball on roof of car

AerialStrike Strike ball high in the air by fly-
ing

DoubleAerialStrike Attempt to AerialStrike twice in
a row

Setup Go to a position and wait for an
opportunity

DodgeClear Clear ball using a DodgeStrike
BumpClear Clear ball using a BumpStrike
AerialClear Clear ball using an AerialStrike

Setup Go to a position and wait for an
opportunity

DodgeClear Clear ball by using a
DodgeStrike

BumpClear Clear ball by using a BumpStrike

AerialClear Clear ball by using an Aerial-
Strike

Refuel Drive towards the nearest avail-
able full boost pad

Recovery Land smoothly and gracefully

Table 1: All Plays Primus and Capitão can perform

Appendix B - Primus Decision Flow Charts

Figure 8: Primus’ GetOutput decision flow.

Figure 9: Primus’ Choose Play decision flow.

, , Silva, Melo and Brown

Appendix C - Primus’ Benchmarks

All-Stars 7-1 11-2 12-2 10-5 13-1 10-2
Botimus 5-2 4-1 5-3 1-3 3-4 5-6
Diablo 4-1 13-2 8-0 7-0 6-2 10-1
ReliefBot 3-5 4-2 5-4 5-1 3-1 4-6

Table 2: Primus’ match scores (where the first number is
Primus’ team’s number of goals and the second is the op-
posing bot’s)

Figure 10: Average number of goals Primus did versus each
bot

Figure 11: Average number of shots Primus did versus each
bot

Figure 12: Average number of saves Primus did versus each
bot

Figure 13: Average number of enemy goals Primus suffered
versus each bot

Figure 14: Primus’ Percentage of shots scored versus shots
missed

Figure 15: Percentage of shots saved versus enemy goals

Cooperative Agents for Rocket League using RLBot , ,

Appendix D - Capitão’s Benchmarks

All-Stars 7-1 9-0 6-1 8-2 7-1 7-0
Botimus 3-1 0-1 3-0 1-2 3-4 3-2
Diablo 8-0 9-0 6-1 5-1 11-0 7-1

Table 3: Capitão’s match scores (where the first number is
Capitão’s team’s number of goals and the second is the op-
posing bot’s)

Figure 16: High-level overview of Capitão’s architecture.

Figure 17: Average stats over the course of three matches be-
tween Capitão and All-Star (values have been rounded be-
cause of chart generating software)

Figure 18: Average time spent on each half of the field over
the course of three matches between Capitão and All-Star

Figure 19: Average stats over the course of three matches
between Capitão and Diablo (values have been rounded be-
cause of chart generating software)

Figure 20: Average time spent on each half of the field over
the course of three matches between Capitão and Diablo

Figure 21: Average stats over the course of three matches
between Capitão and Botimus Prime (values have been
rounded because of chart generating software)

Figure 22: Average time spent on each half of the field over
the course of three matches between Capitão and Botimus

	Abstract
	1 Introduction
	2 Rocket League
	2.1 Game Description
	2.2 Player Movement and Controls
	2.3 Environment

	3 RLBot
	3.1 Framework Description
	3.2 Extra Packages
	3.3 Well-known Bots

	4 Primus
	4.1 Description
	4.2 Architecture
	4.3 GameInfo
	4.4 Plays
	4.5 Decision Making
	4.6 Results

	5 Capitão
	5.1 Description
	5.2 Architecture
	5.3 Communication
	5.4 Roles
	5.5 Decision Making
	5.6 Results

	6 Neurocket
	6.1 Q-Learning
	6.2 Deep Q-Networks
	6.3 Using replays
	6.4 Time constraints and hardware issues

	7 Final Thoughts
	References

