
Emotionally Expressive Motion Controller for Virtual
Character Locomotion Animations

Emotional Discernment and Emotional Motion Synthesizer for both
Kinematic and Policy-Based Virtual Character Animation

Diogo Gonçalves Silva

Thesis to obtain the Master of Science Degree in

Engenharia Informática e de Computadores

Supervisors: Prof. Pedro Alexandre Simões dos Santos
Prof. João Miguel de Sousa de Assis Dias

Examination Committee

Chairperson: Prof. José Carlos Martins Delgado
Supervisor: Prof. Pedro Alexandre Simões dos Santos

Member of the Committee: Prof. Carlos António Roque Martinho

November 2022

This work was created using LATEX typesetting language
in the Overleaf environment (www.overleaf.com).

Acknowledgments

The work presented throughout this document represents not only the conclusion of my master’s

degree but also the end of an entire academic journey that began eons ago. As such, there are some

people who I would like to thank and acknowledge.

First and foremost I want to thank my parents - Graça and Antero - who helped mold the person

I am today. I have nothing but appreciation for all the unconditional love and support you have given

me throughout my life. For all the countless hours you spent taking care of me, and the insurmountable

financial help you provided throughout these years. You gave me everything I ever asked for and allowed

me to delve into a multitude of hobbies and activities that shaped my interests and the person I became.

You cared for me and gave me all the opportunities that you did not have. I hope to make you proud and

can promise you that, wherever I go, I will never forget where I came from, and who was it that allowed

me to grow into who I am today. I love you mum and dad.

I would like to thank my girlfriend Cláudia who stood by my side for the past 3 years at the time of

writing. I do not know what the future holds for us, but there are no words that express my gratitude for

having put up with me for as long as you have and for all the love you showed me. Thank you for being

as understanding as you have been and for supporting me and my work as you did. I truly am grateful

for having met you and having had the privilege of being your partner.

I also extend my thanks to my dissertation supervisors Prof. Pedro Santos and Prof. João Dias for

their insight, knowledge, sharing of ideas and all the words of encouragement provided throughout the

elaboration of this thesis.

Finally, I would like to thank my friends who have accompanied me throughout the years. For all the

hours spent hanging out, talking or playing games in both good and bad times. Thank you for all the

laughter and time we spent together. I want you to know that each and every one of you occupies a very

special place in my heart.

Thank you everyone, for your support, love and affection.

i

Abstract

Style and emotional expressiveness are essential aspects of virtual character computer animation. For

a virtual character to display different emotions, motion capture data conveying each desired style has

to be recorded, even if the baseline motion is the same. Animators then have to refine and conjoin

each recording in order to create the final animations making it a timely and costly process. Although

there have been efforts made into the automatic generation of motions through Deep Reinforcement

Learning techniques, the problem persists that, for each new desired emotion, reference data displaying

said emotion has to be readily available and a new motion has to be learned from scratch. By combining

Machine Learning with Emotion Analysis - in particular Laban Movement Analysis and the Pleasure,

Arousal, Dominance Emotion State Model - we have developed a system that is capable of not only

identifying the perceived emotion of virtual character locomotion animations but that also allows users

to alter the character’s expressed emotion in real time and without the need of additional data.

Keywords

Computer Animation; Kinematic Models; Physics-Based Models; Machine Learning; Sentiment Analy-

sis; Motion Synthesis

iii

Resumo

Estilo e expressividade emocional são aspetos essenciais da animação em computador de person-

agens virtuais. Para que uma personagem virtual exiba emoções diferentes, são necessários dados

de captura de movimento que transmitam cada estilo desejado, mesmo que o movimento base seja o

mesmo. Após a recolha destes dados, os animadores precisam ainda de refinar e juntar cada gravação

para criar a animação final, sendo este um processo demorado e caro. Bastantes esforços têm sido

direcionados para a geração automática de animações através de técnicas de Deep Reinforcement

Learning, mas continuamos com o problema que, para cada nova emoção desejada, precisamos de

dados de referência que exibam essa emoção e de gerar uma nova animação. Ao combinarmos Apren-

dizagem Automática com Análise de Emoções - em particular Laban Movement Analysis e o Pleasure,

Arousal, Dominance Emotion State Model - desenvolvemos um sistema que é não só capaz de iden-

tificar a emoção de animações de locomoção, permitindo também que utilizadores alterem a emoção

expressa pela personagem em tempo real e sem a necessidade de quaisquer dados adicionais.

Palavras Chave

Animação de Computador; Modelos Kinematicos; Modelos Baseados em Fisica; Aprendizagem Au-

tomática; Analise de Emoções; Sintetização de Movimentos

v

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Problem . 4

1.3 Contributions . 5

1.4 Document Outline . 6

2 Background 7

2.1 Deep Reinforcement Learning . 9

2.2 Autoencoders . 10

2.3 Gradient Tree Boosting . 11

2.4 Animation Generation . 12

2.4.1 Kinematic Models . 13

2.4.2 Physics-Based Models . 13

2.5 Laban Movement Analysis . 14

2.6 Pleasure, Arousal, Dominance Emotional State Model . 15

3 Related Work 17

3.1 Deepmimic . 19

3.2 Spacetime Bounds . 20

3.3 Emotion Control of Unstructured Dance Movements . 23

4 Emotionally Expressive Motion Controller 27

4.1 Architecture . 29

4.2 Emotional Classification . 30

4.2.1 LMA Feature Extraction . 30

4.2.2 Emotion Classifier . 31

4.3 Emotionally Expressive Motion Synthesis . 35

4.3.1 PAD to LMA Mapper . 35

4.3.2 Motion Synthesizer . 36

4.3.3 Inverse Kinematics Solver . 37

vii

4.4 System Showcase Modules . 38

4.4.1 Motion Learning . 38

4.4.2 User Interface . 39

5 Implementation 43

5.1 Dataset . 45

5.2 LMA Feature Extraction . 47

5.3 LMA to PAD Mapping . 49

5.4 PAD to LMA Mapping . 53

5.4.1 Direct LMA Feature Generation . 54

5.4.2 AutoEncoder LMA Feature Generation . 55

5.5 Motion Synthesis . 56

5.6 Inverse Kinematics Solver . 57

5.7 Support Modules . 60

5.7.1 BVH To Deepmimic Converter . 60

5.7.2 User Interface . 60

5.7.3 Motion Learning . 62

6 Results & Analysis 67

6.1 Final System . 69

6.2 User Testing & Validation . 71

6.2.1 Emotion Identification Task . 71

6.2.2 Primed Emotion Agreement Task . 72

6.2.3 Discussion . 75

7 Conclusion 77

7.1 Conclusions . 79

7.2 Future Work . 80

Bibliography 81

A Project Code & Useful Links 87

B User Test Reports 89

viii

List of Figures

1.1 A character in the video game “The Sims 4” walking in 4 different emotional styles. 4

1.2 The proposed system showcasing a reference baseline motion (right) and a physics-

enabled policy-controlled character (left) whose movement have been altered to show-

case the desired emotion “Sad”. 5

2.1 The typical Reinforcement Learning (RL) trial and error learning loop. 9

2.2 The typical Autoencoder architecture. 10

2.3 A decision tree where we use the values of the features ”Hands Distance” and ”Feet

Distance” to predict the ”Pleasure” value. 11

2.4 The two main types of Ensembles - Bagging and Boosting. 12

2.5 A typical motion capture data studio recording setup [7]. 12

2.6 Explanation of the Pleasure, Arousal, Dominance 3-Dimensional model [10]. 15

3.1 An example of motions learnt using DeepMimic [43]. 19

3.2 DeepMimic’s policy network [43]. 20

3.3 A feasible region and the effects of applying spacetime bounds to it [39]. 21

3.4 How progressively specifying spacetime bounds can restrict the feasible region of an ani-

mation and force the policy to more accurately resemble the reference animation [39]. . . 22

3.5 Spacetime Bound’s Policy Network. 23

3.6 Heuristic rules for Emotional Motion synthesis [6]. 25

3.7 A Graphical User Interface (GUI) allowing users to change and visualize virtual character’s

expressed emotions [6]. 26

4.1 An overview of the Emotionally Expressive Motion Controller (EEMC)’s architecture. . . . 29

4.2 The process of using Gradient Boosting Regressors to predict the Pleasure, Arousal,

Dominance (PAD) coordinates of a set of Laban Movement Analysis (LMA) features ex-

tracted from a motion. 31

4.3 Example of 5 different motions and our system’s predicted PAD coordinates. 34

ix

4.4 The two processes of generating a new LMA feature set given PAD coordinates. 35

4.5 Example of an altered motion to convey the feeling “Tired” (left) and the baseline motion

(right). 38

4.6 Frames from a character performing the same motion with different controllers. 39

4.7 A character performing a motion and the GUI used to trigger the EEMC. 39

4.8 Our Machine Learning (ML) model loading display. 40

4.9 The Motion Display window. 40

4.10 The main GUI. 41

5.1 Animations from the Bandai-Namco-Research Motion Dataset [7]. 45

5.2 The process of converting the Dataset’s Bounding Volume Hierarchy (BVH) files into a

collection of usable LMA Feature sets. 46

5.3 Example of 4 motions from our dataset expressing 4 different emotions. 46

5.4 The predicted and true values of the Pleasure, Arousal and Dominance of 100 random

sorted samples from the Test set. 51

5.5 Prediction results of samples from our Test set. Each sample is coloured according to

their real emotion and placed in the coordinate space according to its predicted emotional

coordinate. 52

5.6 An overview of the Direct approach. 54

5.7 An overview of the AutoEncoder approach. 55

5.8 The Autoencoder architecture. 56

5.9 Showcase of the usage of Inverse Kinematics to alter a character’s joint (left wrist) position. 59

5.10 A main (left) and reference (right) character’s performing an animation in the Main Display

window. 61

5.11 The closest discrete emotion, colour coded according to how close it is to the predicted

coordinates. 62

5.12 The old and new way of specifying emotional coordinates for motion synthesis. 62

5.13 Two characters being displayed with one (left) being controlled by a policy that learned

to mimic the reference animation showcased by the other (right) in a physics-enabled

environment. 63

6.1 The finalized GUI used to showcase the system. 70

6.2 Four motions synthesized using the same baseline motion and 4 different desired emotions. 70

6.3 Clustered bar charts showing the count of answers compared to the correct emotion for

each of our set of clips. 73

6.4 Boxplot charts showing the value distribution for each of 6 of our tested emotions. 76

x

B.1 Bar charts showcasing the count of answers given by test participants per video clip type

for the emotion “Happy”. 90

B.2 Bar charts showcasing the count of answers given by test participants per video clip type

for the emotion “Afraid”. 91

B.3 Bar charts showcasing the count of answers given by test participants per video clip type

for the emotion “Tired”. 92

B.4 Bar charts showcasing the count of answers given by test participants per video clip type

for the emotion “Angry”. 93

B.5 Bar charts showcasing the count of answers given by test participants per video clip type

for the emotion “Confident”. 94

B.6 Bar charts showcasing the count of answers given by test participants per video clip type

for the emotion “Sad”. 95

B.7 Results of a Friedman Test done to compare each of our video clip types for each emotion. 96

B.8 Results of a Wilcoxon Signed Rank Test done to compare each of our video clip types for

the emotion “Happy”. 97

B.9 Results of a Wilcoxon Signed Rank Test done to compare each of our video clip types for

the emotion “Tired”. 97

B.10 Results of a Wilcoxon Signed Rank Test done to compare each of our video clip types for

the emotion “Angry”. 98

B.11 Results of a Wilcoxon Signed Rank Test done to compare each of our video clip types for

the emotion “Confident”. 98

B.12 Results of a Wilcoxon Signed Rank Test done to compare each of our video clip types for

the emotion “Sad”. 99

xi

xii

List of Tables

2.1 8 examples of LMA features useful for describing human movement. 14

4.1 Our set of 25 LMA Features. 30

4.2 Each of Heuristic Rule and their associated LMA Features. 36

5.1 Conversion from the original motion styles to emotions and emotional coordinates. 47

5.2 Configurable parameters of the LMA Feature Extractor module. 48

5.3 All hyper parameters that were tuned using Random Search Cross Validation for each

regressor. 50

5.4 Motion Synthesis rules. 58

5.5 All possible training arguments for the Motion Learning module. 64

6.1 The EEMC system’s boot arguments. 69

6.2 Reported Friedman Test Significance Levels per emotion. 74

A.1 Project links. 87

xiii

xiv

List of Algorithms

4.1 Main Emotion Identification Loop. 32

4.2 Emotional Coordinate Prediction Functions. 33

xv

xvi

Listings

5.1 The LMA Feature Extraction output. 48

5.2 The DeepMimic motion file format. 60

5.3 Example of a JSON file containing training arguments to learn to mimic a running anima-

tion using spacetime bounds with the default humanoid character. 65

5.4 Example of a JSON file containing arguments to start our system with a learnt physics-

enabled policy-based character controller. 65

xvii

xviii

Acronyms

BVH Bounding Volume Hierarchy

DRL Deep Reinforcement Learning

EEMC Emotionally Expressive Motion Controller

FBC Feedback Controller

FFC Feedforward Controller

GAN Generative Adversarial Networks

GUI Graphical User Interface

LMA Laban Movement Analysis

MAE Mean Absolute Error

ML Machine Learning

MSE Mean Squared Error

PAD Pleasure, Arousal, Dominance

PPO Proximal Policy Optimization

RCM Russel’s Circumplex Model

RL Reinforcement Learning

RSI Reference State Initialization

SMOTE Synthetic Minority Oversampling Technique

SSE Sum of Squared Errors

URDF Unified Robot Description Format

VAE Variational AutoEncoders

xix

xx

1
Introduction

Contents

1.1 Motivation . 3

1.2 Problem . 4

1.3 Contributions . 5

1.4 Document Outline . 6

1

2

Throughout this chapter we provide some insight as to what problem we are aiming to tackle, what

our proposed solution is and what benefits it generates. We start by explaining the motivation behind

our work. We then move on to explicitly stating what the problem we’re trying to solve is. Finally we lay

out what our contributions are, briefly going over the proposed solution.

1.1 Motivation

Conventionally, 3D computer character animation is created by professional human artists who manu-

ally tweak a given character’s body in key frames and interpolate between them [32]. This process is

commonly aided by the usage of motion capture data - mocap [31,55]. These files consist in recordings

of human actors done in a way that their motions can be directly applied to a virtual character. This data,

when available, can be used as the basis for an animation, heavily assisting the artist and speeding up

the whole animation process.

Automatic physics-based character animation generation aims to synthesize realistic and natural-

looking motions using only reference mocap files, without the need of manual animation work. Recent

advancements made in Deep Reinforcement Learning (DRL) algorithms have allowed for the construc-

tion of systems [26, 39, 43] able to successfully learn and reproduce physically accurate motor skills in

a plethora of motions such as dances, locomotion and other body gymnastics. These physics-based

motion learning systems have major commercial value especially in the to the Film and Video-Game

industries, the two currently highest grossing entertainment industries [21, 59]. They allow for overall

animation costs to be cut by requiring less manual animation work. Moreover, these newer systems are

capable of creating character controllers that are both robust and capable of generalizing to a wide array

of situations, such as having the character automatically recover from being hit with an object, or making

it so the character can keep performing the motion regardless of the inclination of the terrain.

Aside from generating the animation itself, animators are also tasked with enabling characters with

the ability to express different emotions. Styles and emotions are an important aspect of generating

realistic and believable virtual characters. This can be done in a manner of different ways, such as

through changes in the character’s voice and tonality, facial expression or through the character’s body

language. This latter method of emotional control has animators generate different variants of the same

motion but with slight alterations to the character’s body language, indicative of their current emotional

state. Such expressiveness conveyed by the character’s movements is paramount to properly carry a

story, setting a scene’s tone and generating an intended impact on the viewer.

A practical example of the usage of emotional expression through body language in virtual characters

can be seen in the Video Game ”The Sims 4”1.In this game, characters are able to express a wide array

1https://www.ea.com/games/the-sims/the-sims-4

3

https://www.ea.com/games/the-sims/the-sims-4

of emotions, with their emotional state being influenced by their surroundings and overall needs. Aside

from facial animations, these emotions are expressed to the player by altering the character’s baseline

animations, as illustrated in Figure 1.1. For example, if a character is feeling tired or lethargic, their

walking animation will slope their back forward and drop their arms to the sides to showcase their low

energy. Each of these altered animations had to be manually created by human animators from scratch.

Figure 1.1: A character in the video game “The Sims 4” walking in 4 different emotional styles.

1.2 Problem

In essence, a problem present in current computer animation is the fact that, should animators want their

characters to convey different emotions, different variants of the same baseline “neutral” animation have

to be created. For example if an animator wants a character to walk sadly, happily and angrily, they need

to create at least three different animations of the character performing the same motion but expressing

a different body language. The issue is then exacerbated by the fact that if the authors now want the

character to convey the same set of emotions, but in a different emotion, for example, running, a whole

new animation stack has to be created from scratch. This issue persists whether the animators are

using state of the art intelligent systems for automatic motion learning or conventional manual computer

animation. Furthermore, this usually also means that mocap data of an actor conducting each motion-

emotion pairing has to be readily available.

Having to generate an animation stack comprised of the same motion in each desirable emotional

style makes creating characters capable of expressing and changing between emotions a tedious, time-

consuming and expensive task. With the increase in scale of the produced content comes the need

for the creation of more animations with more emotional variety and stylistic nuances, exacerbating the

4

amount of manual work needed and stretching the realms of what is feasible with conventional means

of animation production. We believe that a tool capable of automatically altering a character’s motion to

convey different emotions without the need of any additional data, training or manual labour, would allow

authors to more easily and quickly create emotionally expressive and impactful virtual characters.

1.3 Contributions

We propose a novel solution to this problem that combines the usage of Machine Learning (ML) models

and Laban Movement Analysis (LMA) [23] for emotional classification and motion generation. Changes

to the motion are applied in real time and get computed after a new desired emotion is specified. New

poses are synthesized for the character at each frame, forcing the character to express the desired

emotion, whilst still maintaining the baseline motion and movement.

The developed framework was named Emotionally Expressive Motion Controller (EEMC) and is

shown in Figure 1.2. The system focuses on locomotive motions - walking, running and dashing - and al-

lows users to edit the virtual character’s expressed style and emotion in real-time, any number of times,

without slowing down or stopping the animation and without the need for any additional mocap data

or motion learning training. Moreover, our system works not only with Kinematic mocap data but also

automatically generated Physics-Enabled Policy based character controllers learnt, for example, using

the Spacetime Bounds DRL system [39]. The quality of emotions conveyed by the system’s generated

motions was validated through different user tests, revealing that the framework manages to produce

motions with comparable emotional expressivity to reference, professional-grade mocap animations. An

interactible Graphical User Interface (GUI) was also built to showcase the system’s capabilities.

Figure 1.2: The proposed system showcasing a reference baseline motion (right) and a physics-enabled policy-
controlled character (left) whose movement have been altered to showcase the desired emotion “Sad”.

5

An article detailing the proposed framework was written and submitted to the IEEE International Sym-

posium on Multimedia2. The paper has since been anonymously reviewed and approved for publishing

during the conference. A different work was also elaborated in parallel dubbed “20 Ways To Answer

Binary Questions in Virtual Reality” and is currently in the process of being reviewed and submitted for

publishing in Springer’s Virtual Reality journal3. Whilst not directly correlated to the EEMC, this work

bootstrapped the discussion of how a character’s conveyed emotion - be it through their voice’s cadence,

facial expression or body language - can majorly influence the impact produced on a viewer. This line of

thought eventually inspired the development of the framework described throughout this document.

1.4 Document Outline

This thesis is written in conformity to the following structure:

• Chapter 1: Introduction presents the main motivation that lead to the creation of this work, speci-

fies the problem that our work is attempting to tackle and provides a brief overview of the proposed

system’s objectives, capabilities and merits.

• Chapter 2: Background provides information on several topics related to our work, such as char-

acter animation models and ML techniques, in order to better help understand the system’s func-

tioning.

• Chapter 3: Related Work goes over previous works that heavily influenced and inspired our own.

• Chapter 4: Emotionally Expressive Motion Controller explains the system’s design, architec-

ture and core modules.

• Chapter 5: Implementation goes over implementation nuances and decisions, the dataset used

and certain engineering problems that had to be surpassed.

• Chapter 6: Results & Analysis showcases the finalized system, how well it performs and the

results of the conducted user studies.

• Chapter 7: Conclusion finishes up by providing a summary of our work and its accomplishments,

alongside a brief reflection on possible improvements and future work.

2https://www.ieee-ism.org/
3https://www.springer.com/journal/10055/

6

https://www.ieee-ism.org/
https://www.springer.com/journal/10055/

2
Background

Contents

2.1 Deep Reinforcement Learning . 9

2.2 Autoencoders . 10

2.3 Gradient Tree Boosting . 11

2.4 Animation Generation . 12

2.5 Laban Movement Analysis . 14

2.6 Pleasure, Arousal, Dominance Emotional State Model 15

7

8

Our work touches upon several topics related to, not only Artificial Intelligence and ML, but also

Human Movement and Emotion Analysis. This chapter provides an explanation of several background

topics necessary to understand our system, from character animation and generation to specific ML

models and human motion emotion analysis paradigms.

2.1 Deep Reinforcement Learning

DRL is one of the areas of ML that has seen the quickest and most promising improvements in recent

years. When it comes to the field of learning to mimic animations in physics influenced environments,

DRL has become the most widely used approach. New systems utilizing DRL are capable of imitating

reference motion capture movements to great success, generating animations that look natural, avoid

jerky motions and are robust to the influences of external forces [39,43].

DRL consists in the combination of two paradigms. Firstly we have Reinforcement Learning (RL).

This is a ML methodology based around having agents learn how to perform tasks by experimenting with

actions in a controlled environment and being given rewards based on how well they performed [58,65],

as illustrated in Figure 2.1. Through trial and error agents will automatically learn what the optimal

actions are given the state of the environment in the current time step. A RL problem is defined by a

state space - containing all states the agent can be in -, an action space - consisting of all possible

actions the agent can perform -, a transition matrix - all possible state transitions an agent can undergo

upon performing an available action, and their corresponding transition probabilities - and a reward

function which denotes how desirable each state is by taking as input the agent’s state and outputting

a value corresponding to the agent’s reward for going to that state. The outcome of this type of training

is an optimal policy, π - a mapping between the agent’s state space and their action space. The policy

π(s) corresponds to the action that the agent should choose to take for every state s in the state space,

meaning the action that maximizes the outcome reward for when the agent is in state s. The policy

represents the agent’s learned strategy, telling them what to do in any given situation.

Figure 2.1: The typical RL trial and error learning loop.

9

There are several ways to find the optimal policy, but one technique that is worth noting is Proximal

Policy Optimization (PPO) [53]. This is a form of policy gradient, a type of RL techniques that rely on

updating the policy at each time-step to optimize the expected cumulative reward using gradient descent.

PPO improves upon previous approaches such as Trust Region Policy Optimization [52] by ensuring that

the updated policy doesn’t differ too wildly from the previous iteration by clipping the update region.

Deep Learning is a family of ML methodologies encompassing algorithms based on deep neural

networks [33]. They differ from other classes of ML by using multiple layered networks, each layer

progressively extracting higher level features from the initial input. These types of techniques usually

require a lot of data and time to train, but due to the increase in available computational resources

they’ve become some of the most trendy ML methodologies, having seen successful applications in

areas such as computer vision [62] and natural language processing [42]. By combining Deep Learning

with the aforementioned RL we get DRL. A class of ML where agents learn how to optimally perform a

task in their environment by trial and error by optimizing a policy [35, 41]. Rather than having the policy

simply be a mapping or lookup table between state-action pairs and rewards, it instead takes the form of

a Deep Neural Network tasked with learning how to predict how valuable each state-action pair is. This

is especially useful for problems in which the state, action space or both are too large, as is the case

with RL for animation generation.

2.2 Autoencoders

Autoencoders are unique types of ML models whose goal is to learn how to translate the initial input

into a latent space, and then translate that back into the original representation. Autoencoders are

comprised of two different neural networks - the Encoder and the Decoder - as represented in Figure

2.2. The Encoder is responsible for taking the initial input and learning how to compress them into

a latent representation with the desired dimensionality. The Decoder does the reverse operation, of

learning how to map the latent space back into the original dimensionality.

Figure 2.2: The typical Autoencoder architecture.

10

These types of networks have been used to great success for tasks such as Image Data Compres-

sion [14, 37] in the past, but lately, they’ve been mostly used in Data Analysis and Preparation steps

such as Anomaly Detection [13, 69] or Noise Reduction. For our efforts in specific we’re making use of

the AutoEncoder’s applicability in the field of Feature Dimension Reduction [63, 64]. The idea is that by

using an AutoEncoder to learn a latent space representation of a set of inputs, with a smaller dimension,

we can thereby reduce the dimensionality of the features and therefore the overall complexity of the

problem.

2.3 Gradient Tree Boosting

Gradient Tree Boosting is a decision tree ensemble-based ML technique that can be used for regression

and classification problems [12,22]. Decision trees are usually simple models that output a prediction by

sequentially partitioning data. These models can be visualized as a flowchart where each node denotes

a feature of our data and each branch represents a decision. At the end of each branch we have leaf

nodes representing the final prediction of the model. Figure 2.3 illustrates a simple decision tree.

Figure 2.3: A decision tree where we use the values of the features ”Hands Distance” and ”Feet Distance” to predict
the ”Pleasure” value.

Ensemble methods are a class of algorithms that work by having a set of several weak models, rather

than a single very powerful one [20]. A common issue with Decision Trees is that they tend to overfit to

the training data. A way to counteract this is by generating several different decision trees to create an

ensemble. There are two main subcategories of Ensemble Methods [45], as exemplified in Figure 2.4.

Firstly, Bagging trains each model in parallel, and as such each model has no conceptualization of the

others within the ensemble. Secondly we have Boosting, where each model is trained sequentially and

as such will be better than the last and learn from its errors.

Gradient Tree Boosting Regression combines several weak decision trees using a Boosting Ensem-

ble. All trees are connected sequentially and aim to optimize and minimize the previous trees’ error

11

Figure 2.4: The two main types of Ensembles - Bagging and Boosting.

using a loss function such as Mean Squared Error (MSE) or Mean Absolute Error (MAE). The number

of estimators is critical as too many trees can lead to a final model that overfits to the data. There

are several other key hyper parameters that can be tuned such as the learning rate - how much each

model can deviate from the previous one - and the maximum tree depth - which the higher it is the more

complex each individual tree is allowed to be.

2.4 Animation Generation

Character Animation refers to the process of animating a virtual character to make it to perform a spe-

cific motion. This process is normally done by human artists who manually tweak a character’s body,

setting its joints’ positions in key frames, and interpolating between them [32]. To help with this process,

animators usually resort to motion capture data - recordings of human actors, done in a way that their

motions can be directly applied to a virtual character or skeleton [31, 55]. Figure 2.5 shows the typical

motion capture data studio recording setup. This data can be used as a reference or a baseline for a

new animation, heavily aiding the artist speed up their work. However, it does not remove the need for

manual human intervention in the creation of new animations.

Figure 2.5: A typical motion capture data studio recording setup [7].

12

There have been numerous efforts poured into creating virtual character controllers that can au-

tomatically learn how to mimic and perform animations. Unlike motion capture data by itself, these

controllers aim to bypass the need to manually design and implement each animation that the character

is expected to perform. These controllers can be subdivided into two different categories - Those based

on Kinematic Models and those based on Physics-Based Models.

2.4.1 Kinematic Models

Kinematic Models can be defined as “mathematical models that describe the motion of objects without

consideration of forces” [9]. These models usually structure the body they control as a set of links

connected by joints. These links’ motions are then constrained by the degrees of freedom of the joints

they connect to, hence restricting each link’s movements in relation to each other. For example, by

defining an arm and a forearm as two links connected by the elbow joint, a kinematic model can restrict

the forearm’s motion by guaranteeing that it never rotates over 180º degrees in relation to the arm, hence

preventing an unnatural positioning of the skeleton.

Lately, there have been efforts made towards automatically building Kinematic Character Controllers

through data-driven approaches [34, 50] - stemming from the idea that by being fed a sufficiently large

dataset of motion capture data, realistic and natural motions can be synthesized by simply picking which

clip to play from the available list of animation frames at any given time and situation. The main issue

with this approach comes from the fact that, for them to work, a staggeringly large amount of high quality

data needs to be available, least the system risk not being able to properly generalize the motion to work

in the presented environments and tasks.

2.4.2 Physics-Based Models

Physics-Based Models refer to a mathematical representation of an object and its motion. Unlike

Kinematic Models, they take into consideration external forces in order to simulate the influences of

the environment’s physics laws over the modeled object [29]. These controllers have the benefits of

generating physically accurate motions, lending themselves well to creating natural-looking character

animations. However, whilst controllers operating under these physics laws can be created and tuned

manually, their design can be challenging, often relying on human insight and the simplification of the

underlying physics model [1,16,43,67].

Implementations of Physics-Based Character Controllers have gravitated towards automatic Policy-

Based, Physics-Enabled Controller generation through DRL. This is one of the areas that has seen

the quickest improvement in recent years, in part due to the increase of available computational re-

sources. A lot of investigation has been done on possible applications of Deep Learning and, more

13

specifically, DRL, on character animation [26]. As DRL grew to become the de facto methodology for

generating physics-enabled character controllers, new systems have been created, capable of synthe-

sizing controllers that learn to imitate reference motion capture movements, generating animations that

look natural and managing to avoid the jerky movements of past techniques [39,43].

2.5 Laban Movement Analysis

LMA is a methodology and language for describing human movement that draws inspiration from fields

of anatomy, kinematics and psychology [6, 23]. Using this form of analysis, movement description can

be broken down into 4 different categories, each possessing a different number of properties. These

categories are as follows:

• Body - Structure and physical characteristics of the human body while in movement.

• Effort - Qualities and dynamics of the movement correlated to the amount of energy, effort, force

and weight discharged by the body.

• Shape - The way the body changes shape during movement as well as the intricate relationships

between the different parts of the body

• Space - Body’s movement in relation to the environment it is in alongside other relationships with

the surrounding space

The concept of LMA has been used in virtual character animation as a means to extracting features

from human movements in a manner that can then be parameterized and utilized for generating realistic

movements [48]. Table 2.1 showcases just some of the many LMA features that can be extracted using

this concept [6].

Table 2.1: 8 examples of LMA features useful for describing human movement.

Feature Category
Hands Distance Body
Hip-Ground Distance Body
Left Foot Velocity Effort
Pelvis Acceleration Effort
Volume (All joints) Shape
Torso Height Shape
Total Distance Space
Area Per Second Space

14

2.6 Pleasure, Arousal, Dominance Emotional State Model

Emotional classification is a topic related to psychology and affect computing. It involves manners

of distinguishing emotions from one another through two main approaches. Emotions can either be

considered discrete, meaning humans have a preset array of emotions that they discretely swap be-

tween [28,60], or be defined in accordance to continuous values in dimensional axis, smoothly blending

into each other [40, 49]. Focusing on the latter, there are several dimensional models that attempt

to place emotions on a 2D or 3D scale. One such model is the widely used Russel’s Circumplex

Model (RCM) [49], which models emotions into a 2D circular space consisting of an Arousal and Va-

lence axis, describing emotions alongside a Deactivated/Alert continuum and a Pleasure/Displeasure

one, correspondingly.

The Pleasure, Arousal, Dominance (PAD) Emotional State Model [40] is an extension of the ideas

of RCM which can also be used to describe and classify emotional states. PAD differs from RCM by

categorizing emotions according to three dimensions rather than two:

• Pleasure - An axis which describes how pleasurable or unpleasant the actor feels.

• Arousal - An axis measuring how alert or soporific the actor feels.

• Dominance - An axis representing how in control or submission the actor feels.

While RCM is a good, simple model for pinpointing core affect emotions [49], PAD has the advan-

tage of being able to take into account the influence and emotional impact of external forces upon the

actor’s feelings, through the implementation of the dominance axis. Using this model, an emotion e is

represented as a 3-dimensional set of coordinates (p, a, d) corresponding to each of the axis. Image

2.6 showcases a 3D visualization of the PAD model, alongside giving examples of discrete emotions

described using this model.

Figure 2.6: Explanation of the Pleasure, Arousal, Dominance 3-Dimensional model [10].

15

16

3
Related Work

Contents

3.1 Deepmimic . 19

3.2 Spacetime Bounds . 20

3.3 Emotion Control of Unstructured Dance Movements 23

17

18

There have been lots of recent developments in fields that aim to tackle and solve problems similar to

our own. As such, this chapter will serve to mention some of the most prevalent, state of the art works.

The efforts described throughout these sections laid the groundwork and served as inspiration for our

own system.

3.1 Deepmimic

DeepMimic [43] is a DRL system for physics-based virtual character motion learning. This system is ca-

pable of learning complex behaviours, enabling a character to perform movements such as walking and

running, alongside harder gymnastics like cartwheels and spins as displayed in Figure 3.1. Furthermore

it does it while avoiding generating unnatural movements, jerky motions and other artifacts that previous

works struggled with [26,43].

Figure 3.1: An example of motions learnt using DeepMimic [43].

The DeepMimic system is based around the idea of directly rewarding the character controller for

having outcome motions that resemble the reference animation whilst also accomplishing additional

task objectives. These addition goals are used to indirectly curate the look and feel of the final outcome

animation. This goal-oriented approach has the benefit of making the motion learning process more

robust and allows the character to learn how to recover from external perturbations, like, for example, a

ball being thrown at the character while it is walking. The motion will still manage to remain natural with

the recovery strategies exhibiting a high degree of robustness.

In terms of how it functions, DeepMimic receives as input a baseline animation in the form of motion

capture data or animation keyframes. These motion files have to be provided in a specific Deepmimic-

friendly format. The system then uses this data to generate a control policy. This policy is a mapping

between the state of the character and task-specific goal pair, and the action that needs to be performed

to keep up with the reference motion at any given time-step. States describe the configuration of the

character’s body in terms of the relative positions of each link and joint with respect to the character’s

pelvis (the root joint), their rotations and their linear and angular velocities. Additionally the state also

includes a phase variable denoting whether the character is at the start or at the end of the animation.

19

The output actions specify the target angles for the character controllers that produce the final torques

that need to be applied to the character’s joints.

To learn the control policy the system uses an imitation reward derived from how closely the policy

controlled character resembles the reference motion and a task-specific reward defined by the additional

goals. The policy is modelled as a neural networks in accordance to the DRL paradigm. The used policy

network architecture can be seen in Figure 3.2. PPO [53] is used to train and find the optimal policy.

Layers 1 through 4 of the policy network are utilized to process the environments heightmap. This is

done so that the virtual character is able to perform its motion regardless of slopes and changes in the

ground’s altitude. Layers 5 through 7 combine the previous layers with the current state and goal of the

character. For tasks that don’t require a heightmap the policy consists only of layers 5 through 7. The

system also uses Reference State Initialization (RSI) allowing the agent to learn a certain timestamp of

the animation before they move on to another. For example, for a backflip, the agent first needs to learn

how to land, before they learn how to jump, meaning they need to learn the end of the motion before the

start. Early Termination is also made use of in the sense that a learning episode is terminated should

certain links make contact with the ground, giving the agent a minimal reward of 0. Which body parts are

allowed to touch the ground depends on the reference animation and can be specified before the training

begins. This provides a means of shaping the reward function to discourage undesirable behaviours. It

also provides a curating mechanism that biases the data distribution in favour of samples that may be

more relevant for the task, disregarding the others.

Figure 3.2: DeepMimic’s policy network [43].

3.2 Spacetime Bounds

The Spacetime Bounds framework [39] is an extension of DeepMimic [43] which allows for, not only,

stylistic exploration via heuristic terms, but also robustness against bad reference data. This system is

based around the notion of Spacetime Bounds - loose space-time constraints used to limit the search

space in a fashion akin to early termination. They bind the character’s states in space and time during the

RL training process based only on the given reference motion [39]. They also allow for the simplification

20

of the reward function used during the policy training. With Spacetime Bounds we can use a simple

binary survival reward (0 if the character violates the spacetime bound, 1 otherwise) and still get well

performing, robust policy character controllers.

Formally, a spacetime is the space of all possible events. These events consist in a state-time tuple

representing the system’s state at any given time. A trajectory is the sequence of events in a spacetime.

We can say that a trajectory is causal if all points on it obey applicable physics laws and dynamic

constraints. For example, if a character is falling and suddenly gains height then its trajectory is not

causal. With this in mind a Spacetime Bound is a subset of a given spacetime and has associated

with it a Feasible Region.Feasible Regions are a mathematical optimization concept. Traditionally they

correspond to the region of a graph that contains all the points that satisfy a given problem’s constraints.

For Spacetime Bounds the Feasible Region is the set of points on causal trajectories that fall within the

constraints specified by the bound. The more Spacetime Bounds we specify the slimmer our Feasible

Region will be, since less points of the causal trajectory will befit the imposed constraints. Figure 3.3

exemplifies how imposing more and more Spacetime Bounds - b1 and b2 - will slim down a Feasible

Region of an animation moving from event e1 to e2.

Figure 3.3: A feasible region and the effects of applying spacetime bounds to it [39].

Complex motions have intrinsically smaller feasible regions due to the fact that there are inherently

less possible points composing the movement’s causal trajectory. For example, more complex gymnas-

tics feats such as a backflip have slim feasible regions even without the usage of Spacetime Bounds.

Something like a simple walk animation, however, will have higher volume Feasible Region since there

are more ways this motion can be achieved without violating any physics constraints. As such we can

generate good policy controllers for complex motions by defining a loose set of Spacetime Bounds since

their Feasible Regions are slim by nature.

In order to construct Spacetime Bounds we need to look at the reference trajectory. From it we can

define a Spacetime Bound at any given time-step by restricting the state of the character to be within

21

a certain distance of the reference character’s state. For example, a possible spacetime bound could

be written as “the root orientation should be within 50 degrees of the reference root’s angle”. As we

progress through training each episode will get progressively longer since, as the policy improves, it

begins producing trajectories that violate the spacetime bounds less. This results in less episodes being

terminated early. Figure 3.4 showcases how, by adding more and more Spacetime Bounds - represented

by the red dots and bars - we can slim down the trajectory’s feasible region - coloured in blue - and force

the policy to produce outcomes that more closely resemble the original line of movement - illustrated by

the green line.

Figure 3.4: How progressively specifying spacetime bounds can restrict the feasible region of an animation and
force the policy to more accurately resemble the reference animation [39].

Spacetime Bounds also differs from DeepMimic by making usage of a different policy network ar-

chitecture, as shown in Figure 3.5. This policy contains two main components. First we have the

Feedforward Controller (FFC) which stores the joint angles of the reference motion and linearly interpo-

lates between them during run time to output the default reference joint angles - q̂. Secondly we have

the Feedback Controller (FBC) consisting of a two-layer fully connected neural network which takes in

the full state vector and outputs the offset joint angles - ∆q - that it thinks should be applied to the

character at the given time-step. The input state vector is comprised of the phase index - ϕ - and the

position, orientation, linear velocity and angular velocity of each of the character’s joints alongside the

positions of the end-effectors. The final output of the policy comes in the form of joint angles computed

by summing the previous two results, q = q̂ +∆q.

The introduction of Spacetime Bounds to the DeepMimic system provides several benefits. Firstly,

there’s the fact that Spacetime Bounds are basically just a more refined early termination technique. In

22

Figure 3.5: Spacetime Bound’s Policy Network.

fact, we can specify the same early termination techniques that DeepMimic used through Spacetime

Bounds. However, they are much easier to visualize, understand and generalize for different motions.

Alongside this, rather than having to audit and design appropriate reward functions for policy learning

we can simply use binary rewards - 0 if the character breaks the restrictions, 1 if it does not - and

still achieve a high degree of success in imitating our reference animations. Through the definition of

looser Spacetime constraints we can also allow our policy to perform stylistic exploration. By having

less restrictive Spacetime Bounds or through the usage of additional heuristic rules we can conduct

our policies to learn how to control the character to exhibit certain types of behaviours rather than just

imitating the reference motion. For example, if we added a restriction on the total volume that the

character’s body can express, we can have our character walk more gallantly or confidently. A downside

of this type of stylistic exploration is that it is only possible for less complex motor skills with intrinsically

large feasible regions. This is due to the fact that more complex movements possess naturally thinner

feasible regions giving the character less leeway to deviate from the reference and preventing it from

finding different styles.

3.3 Emotion Control of Unstructured Dance Movements

The Emotion Control of Unstructured Dance Movements system [6] is a program able to analyse a mo-

cap animation’s emotion and automatically tweak it to express a different one. This system is capable

of extracting a mocap’s LMA Features and mapping them into emotional coordinates in the RCM. They

also accomplished the inverse process of mapping emotional coordinates into LMA Features. Using

these generated features, paired with a set of heuristic rules, they can then edit the mocap data interac-

tively, allowing users to alter the character’s displayed emotion with changes being applied within a 10

second interval.

23

The authors began by extracting 37 spatio-temporal LMA features from their training data. Some of

these features include but are not limited to Pelvis Acceleration, Feet Velocity, Hand-Hip Distance and

Torso Height. The training data that was used consisted of several labeled motion captures of dance

performances by different actors in different emotional styles. They then reduced these features by

identifying and keeping only those that were both effective, in the sense that they presented different

values for different emotions, and consistent, meaning they had similar values for the same emotion

regardless of the actor. After this Feature Selection step they ended up with a total of 31 effective-

consistent LMA features which was used to train their system.

Regression was used for emotional prediction by mapping the 31 LMA Features into the 2 dimen-

sional RCM coordinates. The authors began by formulating the Gaussian Radial Basis Function

ϕ(r) = exp(− r2

2σ2
) (3.1)

where σ represents the average distance between the LMA features in the baseline animation’s current

feature vector and their corresponding counterparts in the feature vector - f̂k - of emotion k from the list

of 12 unique emotions the system was trained with. The r parameter is a constant used in Gaussian

Radial Basis Functions. Function (3.1) was then used in the equation

v = w0 +

31∑
i=1

wif̂
i +

12∑
k=1

λkϕ(
∥∥∥f̂ − f̂k

∥∥∥) (3.2)

responsible for computing the predicted emotional valence coordinate - v. In terms of parameters, f̂ is

the baseline animation’s current LMA feature vector containing the 31 extrapolated LMA Features. The

weight parameters - w0, wi, λk - were obtained by fitting Equation (3.2) to the mean values of the training

data’s LMA features for each of the 12 unique emotions - f̂k. Note that whilst the shown equations cor-

respond to the valence coordinate in the RCM space, the exact same regression was used to compute

the arousal coordinate - a - with the weights being fitted to the training data’s arousal values instead.

For the process of motion synthesis the authors began by creating a way to generate new LMA

feature values. This was done by directly mapping from the RCM emotional coordinates back into the

LMA feature space, once again, through regression. They used another Gaussian Radial Basis Function

ϕ(r) =

√
1 +

r2

σ2
(3.3)

where σ represents the average distance between the desired emotion’s coordinates - e - and their

counterparts in emotion ek, where k corresponds to each of the 12 emotions in the training data. This

24

function is used as a parameter for equation

f̂ i = w0 + w1v + w2a+

12∑
k=1

λkϕ(∥e− ek∥) (3.4)

where f̂ i corresponds to each of the 31 LMA features of the feature vector the equation aims to generate.

v and a are the RCM valence and arousal coordinates of the provided desired emotion coordinate tuple

e and the weight parameters - w0, w1, w2, λk - are obtained by fitting Equation 3.4 to the training data.

To synthesize motion changes from a given desired emotion it wasn’t enough to simply generate new

LMA Features since the generated features are not guaranteed to be consistent with each other. For

example, given the emotion coordinates representing “Sad” in the RCM space, the regression outputs

31 LMA features to express said feature such as “Hand-Hand” distance and “Hand-Hip” distance. These

desired features, however, may conflict with each other making it impossible for the character to show-

case them both at the same time. As such, the generated features had to be converted into feasible

motion changes applicable to the character. Four heuristic rules, shown in Figure 3.6, were devised for

this. Each rule aims to modify the position of one of four major control joints - Head, Left Hand, Right

Hand and Pelvis. Rules are applied sequentially to avoid conflicts between the generated LMA features.

Each rule has associated with it a subset of the LMA Features and one or more coefficients. These

coefficients aim to minimize the Sum of Squared Errors (SSE) between the current animation’s subset

of LMA Features and the corresponding generated ones at each keyframe of the animation.

Figure 3.6: Heuristic rules for Emotional Motion synthesis [6].

25

Users are allowed to interact with the system to visualize the predicted perceived emotion and change

it through the provided GUI. As shown in Figure 3.7, one or more characters can be loaded into the envi-

ronment and each of their emotions are represented as coloured dots in the RCM diagram on the bottom

left. A user can then change each of the character’s emotions by simply dragging the corresponding dot

into different coordinates, at which point the system will compute and apply changes in 12 seconds (on

average). The proposed system, however, has some shortcomings. Most notably, the fact that it was

limited to specific types of animations - dances - which present a very unique use case rather than a

more generalized one with a larger relevance to broader professional applications - such as locomotions.

Moreover, this system works solemnly with kinematic character controllers which directly apply mocap

data to a virtual skeleton. As such, the system lacks the ability to be paired with the newer systems for

automatic motion generation based on physics-enabled policy-based character controllers.

Figure 3.7: A GUI allowing users to change and visualize virtual character’s expressed emotions [6].

Although similar in overall purpose, our system diverges from this one in several aspects. Firstly,

rather than using the RCM emotional model we resort to the more recent and extensive PAD model [40]

which adds a whole new dimension to our emotional classification in the form of the Dominance axis,

allowing for a more granular emotional identification. Secondly, instead of using Linear Regressions for

the motion-emotion mappings we utilized a more refined and robust technique in Gradient Tree Boosting

Regression. We also proposed an alternative methodology for our PAD to LMA mapping based around

the combination of an AutoEncoder and the aforementioned regression models. Furthermore our set of

LMA features differed, resulting from the mixture and our own experimentation of different combinations

of features from several works [2, 4–6, 46]. The EEMC framework was also implemented in a manner

that allows it to work with, not only Kinematic controllers reading directly from an animation file, but also

with automatically learned Policy-Based, Physics-Enabled character controllers which generate poses

at every given frame. Finally the dataset we used consisted of a multitude of emotionally expressive

locomotion type animations, which tend to have a more general commercial usage than dances.

26

4
Emotionally Expressive Motion

Controller

Contents

4.1 Architecture . 29

4.2 Emotional Classification . 30

4.3 Emotionally Expressive Motion Synthesis . 35

4.4 System Showcase Modules . 38

27

28

This chapter describes the EEMC System’s overall architecture and structure. An explanation of

each of the core modules, the way they function and how they’re connected to the rest of the system is

provided.

4.1 Architecture

The EEMC system can be subdivided into several core sub modules. Figure 4.1 illustrates the con-

nections between the modules and the system’s overall architecture. At the core of the system lies a

character controller used to make a character execute the intended baseline animation. This controller

can either be Kinematic, driven directly by provided mocap, or Policy-Based Physics-Enabled learned,

for instance, using the Spacetime Bounds [39] or DeepMimic [43] system.

For Emotion Classification, the system begins by computing a set of LMA features from the frame

data extracted from the character. These features are then given to the Emotion Classifier module which,

being empowered with a set of ML models, outputs the predicted PAD coordinates.

Emotional Motion Synthesis is triggered whenever new desired PAD coordinates are specified. Firstly,

the system converts the new coordinates into a set of LMA features using ML. These features, along-

side all of the baseline animation’s LMA features, are then given to the Motion Synthesis module which

computes new desired joint positions. These, plus the character’s current pose, are then provided to the

Inverse Kinematics Solver module to generate a new pose for the character.

Figure 4.1: An overview of the EEMC’s architecture.

29

4.2 Emotional Classification

The Emotional Classification subsystem is responsible for analyzing the character’s movements in order

to output the emotion that they’re currently expressing, in the form of a set of PAD coordinates. These

values are continuous and each range from −1.0 to 1.0, as is customary of the PAD model [40]. In order

to achieve this emotional discernment, the Emotional Classification subsystem contains 2 main modules

- The LMA Feature Extraction module and the Emotion Classifier.

4.2.1 LMA Feature Extraction

The LMA Feature Extraction module is capable of receiving Frame Data in the form of joint positions

and rotations and transforming it into a set of LMA Features. The extracted Frame Data is provided

directly by the character controller, which has access to the character’s body pose at any given frame.

LMA Features are computed using the data received over the previous five frames, which corresponds

to our animation’s keyframe interval. It should be noted, however, that this extraction rate, as well as

other parameters, is configurable and can be adapted to different keyframe intervals and frame-rate. The

LMA Features are then passed along to, primarily, the Emotion Classifier. Additionally, this module can

also be used independently from the EEMC system to extract and store a mocap file’s LMA Features.

Each extracted LMA Feature Set is composed of 25 different LMA Features, shown in Table 4.1.

These features were inspired by previous LMA emotional discernment efforts [2, 4–6, 46]. In order to

reach the final chosen set of features data analysis steps were conducted. In particular, for feature

selection, we evaluated feature correlations and overall performance on the LMA to PAD regression

tasks. Different feature combinations, such as the inclusion of joint jitter and joint heights to ground,

were considered and experimented with. The finalized set of features were those that produced an

overall better, more consistent output on our ML models, proving to be sufficient to discern between

emotions whilst avoiding being too highly correlated and redundant amongst each other.

Table 4.1: Our set of 25 LMA Features.

Feature f Category Feature f Category
Max Hand Distance f1 Body Avg. Area between Hands and Neck f14 Shape
Avg. Left Hand - Hip Distance f2 Body Avg. Area between Feet and Hip f15 Shape
Avg. Right Hand - Hip Distance f3 Body Left Hand Speed f16 Effort
Max Stride Length f4 Body Right Hand Speed f17 Effort
Avg. Left Hand - Chest Distance f5 Body Left Foot Speed f18 Effort
Avg. Right Hand - Chest Distance f6 Body Right Foot Speed f19 Effort
Avg. Left Elbow - Hip Distance f7 Body Neck Speed f20 Effort
Avg. Right Elbow - Hip Distance f8 Body Left Hand Acceleration Magnitude f21 Effort
Avg. Chest - Pelvis Distance f9 Body Right Hand Acceleration Magnitude f22 Effort
Avg. Neck - Chest Distance f10 Body Left Foot Acceleration Magnitude f23 Effort
Avg. Total Body Volume f11 Shape Right Foot Acceleration Magnitude f24 Effort
Avg. Lower Body Volume f12 Shape Neck Acceleration Magnitude f25 Effort
Avg. Upper Body Volume f13 Shape

30

4.2.2 Emotion Classifier

The Emotion Classifier is the module that actually converts the character’s current LMA Features into

PAD coordinates, representative of the expressed emotion. This module is equipped with pretrained

LMA to PAD regression models and algorithms to analyze both motion’s emotion at its current time-step,

and the overall emotion showcased throughout the animation in its entirety.

To classify the motion’s perceived emotion a set of Gradient Tree Boosting Regressors [22] was

first trained to map our LMA Features into PAD coordinates. Three different regressors were used -

one for each emotional coordinate. Each regressor took as input our set of 25 LMA Features and

output the corresponding predicted coordinate. Figure 4.2 illustrates this LMA to PAD mapping process.

Regression was used in lieu of classification due to the usage of the PAD Model [40]. As such, rather than

simple discrete emotions like “Sad” or “Happy”, the system instead tries to infer continuous Pleasure,

Arousal and Dominance values ranging in an uninterrupted spectrum between −1.0 and 1.0.

Figure 4.2: The process of using Gradient Boosting Regressors to predict the PAD coordinates of a set of LMA
features extracted from a motion.

Using the trained predictors it is then possible to identify a given motion’s perceived emotion in

real time. Emotional Coordinate prediction is done automatically during an animation’s run time. The

prediction is done in parallel to the animation’s main display loop through multi-threading so as to not

slow down the motion’s visualization. During an animation’s playtime, LMA Feature Sets are computed

by the LMA Feature Extraction module and stored internally. Rather then starting a new coordinate

prediction process every time a new feature set is computed, we instead opted to buffer the sets into

batches. This was done to avoid starting too many emotional identification processes, which would

have hindered the program’s performance due to the process initialization overhead and the fact that

too many processes would be running in parallel at the same time. This would then lead to stutters and

slowdowns on the animation’s display window. Several batch sizes were experimented with. Each batch

ended up consisting of ten feature sets. Whenever one of the prediction processes finishes, the most up

to date emotional coordinates are given to the GUI manager for display. At the end of the animation, a

31

final prediction process is called in order to predict the animation’s overall emotional coordinates, taking

into account all predictions made up to that point. This entire process is described in Algorithm 4.1.

Algorithm 4.1: Main Emotion Identification Loop.
begin

currentLMAFeatureSets, storedFrames, processes←− {}

while animationDisplayLoopRunning do
if not animationHasFinished then

currentFrame←− GetCurrentFrame()
storedFrames.insert(currentFrame)
if IsKeyframe(currentFrame) then

currentLMAFeatureSets.insert(GetLMAFeatureSet(storedFrames))
storedFrames←− {}

if Count(currentLMAFeatureSets) >= 10 then
newProcess←−
CreateNewThread(PredictEmotionalCoordinates(currentLMAFeatureSets))
processes.insert(newProcess)
StartNewThread(newProcess)
currentLMAFeatureSets←− {}

else
if Count(currentLMAFeatureSets) > 0 then

newProcess←−
CreateNewThread(PredictEmotionalCoordinates(currentLMAFeatureSets))
processes.append(newProcess)
StartNewThread(newProcess)
currentLMAFeatureSets←− {}

foreach process ∈ processes do
if notHasFinished(process) then

WaitForProcess(process)

pleasure, arousal, dominance←− PredictF inalEmotionalCoordinates()

The Emotion Classifier module contains two main functions described in Algorithm 4.2. The first one

is used during the animation’s playtime. This function is provided with the current list of LMA features

sets. It standardizes these features and then uses the regression models to compute the pleasure,

arousal and dominance coordinate values for each feature set. It then computes the average value of

each coordinate and returns them, whilst also storing each prediction internally. The second function is

called when the animation is done playing and is used to compute the final overall coordinate predictions.

This function begins by getting the largest stored absolute value and the number of positive and negative

values for all pleasure, arousal and dominance coordinates predicted up to that point. If the largest value

is positive and the majority of predictions is also positive, or vice versa, we compute the final prediction

as a weighted average, giving more importance to the largest value comparatively to the rest. The idea

for this comes from the assumption that the intensity of the animation’s intended emotional expression

32

can vary throughout the motion’s course. At some point, however, each of the coordinate’s intensity will

reach a maximum absolute value, indicative of the true feeling the character is aiming to express. If

the aforementioned condition is not verified the final coordinate prediction is simply the average of all

predictions made throughout the animations playtime.

Algorithm 4.2: Emotional Coordinate Prediction Functions.
allP leasurePredictions, allArousalPredictions, allDominancePredictions←− {}

Function PredictEmotionalCoordinates(currentLMAFeatureSets):
standardizedFeatures←− Standardizer(currentLMAFeatureSets)

pleasurePredictions←− PredictP leasure(standardizedFeatures)
arousalPredictions←− PredictArousal(standardizedFeatures)
dominancePredictions←− PredictDominance(standardizedFeatures)

pleasure←−
∑

(pleasurePredictions)/Count(pleasurePredictions)
arousal←−

∑
(arousalPredictions)/Count(arousalPredictions)

dominance←−
∑

(dominancePredictions)/Count(dominancePredictions)

allP leasurePredictions.add(pleasurePredictions)
allArousalPredictions.add(arousalPredictions)
allDominancePredictions.add(dominancePredictions)

return pleasure, arousal, dominance

Function PredictFinalEmotionalCoordinates():
finalCoordinatePredictions←− {}

foreach
predictions ∈ {allP leasurePredictions, allArousalPredictions, allDominancePredictions}
do

largestV alue←− GetHighestAbsoluteV alue(predictions)

positiveV alueCount←− CountPositiveV alues(predictions)
negativeV alueCount←− CountNegativeV alues(predictions)

if (largestV alue < 0 and (positiveV alueCount > negativeV alueCount)) or
(largestV alue > 0 and (positiveV alueCount < negativeV alueCount)) then

largestV alue←− ∅

if largestV alue ̸= ∅ then
finalPrediction←−

∑
(predictions)/Count(predictions) ∗ 0.75 + largestV alue ∗ 0.25

else
finalPrediction←−

∑
(predictions)/Count(predictions)

finalCoordinatePredictions.add(finalPrediction)

return finalCoordinatePredictions

The emotional coordinates, alongside the closest discrete emotion, are shown to the users in our

GUI as shown in Figure 4.3. These predictions are updated throughout the animation’s display. The final

prediction takes into account all of the classifications made previously, therefore providing an overall

33

prediction of the entire animation, rather than just the previous ten key frames.The Emotional Classifier

module is able to correctly identify the emotions of locomotion animations - walking, dashing and running.

We also tested this module with other types of animations, such as dances. In these instances our

predictions struggled to pinpoint the exact emotional coordinates but nevertheless tended to land on

adjacent emotions within the same PAD model octant. For example, when tested with a “Happy” dance,

the predicted coordinates gravitated towards the emotions of “Confidence” and “Pride” meaning that we

landed on the correct octant of the PAD model, but were overestimating the motion’s Dominance.

Figure 4.3: Example of 5 different motions and our system’s predicted PAD coordinates.

34

4.3 Emotionally Expressive Motion Synthesis

The Emotionally Expressive Motion Synthesis subsystem is capable of taking in a new set of desired

PAD coordinates and altering the character’s motion in real time. Specifying individual PAD coordinate

values was chosen over selecting from preset discrete emotions in order to give a more granular control

over the produced motion’s emotion. Moreover, any discrete emotion can be specified by inputting its

corresponding PAD coordinates. Our motion synthesis changes the character’s motion in order to make

it convey the provided input emotional coordinates. Motion editing is done in real time and can be per-

formed any number of times without slowing down or stopping the animation’s display. This subsystem is

comprised by the PAD To LMA Mapper, the Motion Synthesizer and an Inverse Kinematics Solver.

4.3.1 PAD to LMA Mapper

The PAD to LMA mapper is the first step of the Motion Synthesis pipeline and is used for LMA Feature

Generation. LMA Feature Generation pertains to the process of converting PAD coordinates into repre-

sentative values for our 25 LMA Feature set. This was a necessary step for our EEMC since its Motion

Synthesis subsystem receives, as input, new desired emotional coordinates. These values have to then

be converted into LMA Features that can be used by the proceeding Motion Synthesis module.

The LMA Feature Generation process was accomplished through ML using two distinct methodolo-

gies - the Direct and the AutoEncoder approach - as exemplified in Figure 4.4. The Direct approach

directly transforms PAD coordinates into LMA features using a set of 25 Gradient Tree Boosting Regres-

sors [22]. The Autoencoder approach, on the other hand, adds an additional step, first transforming the

input PAD coordinates into a Latent Feature space and then using an Autoencoder to decode the gen-

erated latent features into our set of LMA feature values. Further detail on each of the methodologies’

implementation and performance is provided in Chapter 5.

Figure 4.4: The two processes of generating a new LMA feature set given PAD coordinates.

35

4.3.2 Motion Synthesizer

The Motion Synthesizer module is used to compute new desired positions and rotations for the char-

acter’s core joints. The module receives both the generated LMA feature set from the PAD To LMA

Mapper, and the baseline motion’s stored LMA feature sets, extracted using the LMA Feature Extractor

module. It should be noted that we consider the LMA Feature Extractor as belonging to the Emotional

Classification subsystem because it is actively computing and sending it features. The Motion Synthe-

sis subsystem, on the other hand, simply uses it to retrieve the LMA Features that have already been

computed during the animation’s first playback.

To generate motion changes, the Motion Synthesis module uses a set of six Heuristic Rules, each

responsible for tweaking the position or rotation of a core joint - Hips, Chest, Hands, Elbows, Feet and

Neck. Each of these rules works by taking into account the current state of the joint its trying to change

- its position and rotation - and one or more associated coefficients. The rules are primarily focused

on changing upper body joints as these tend to have the most impact on the conveyed emotion, while

lower body joints are more important for balance and motion integrity, rather than expression [6]. Each

rule was designed with locomotion type motions in mind, following inspiration and emotional movement

insights from previous works [3, 6, 24, 46, 51]. For example, higher Dominance emotions tend to have

the character broaden their shoulders and increase their overall body volume, lower Arousal, on the

other hand, is usually expressed by the character slumping their back forward and swaying their arms

to exhibit their low energy. The designed rules attempt to translate this knowledge into motion changes.

They each attempt to modify a character’s joint in order to make it so the character’s LMA Features more

closely resemble the generated ones. To do so, each rule uses a set of coefficients representative of the

value difference between its associated subset of baseline and generated LMA Features. The subset of

LMA Features associated with each rule includes all features that are directly impacted by the joint it is

trying to change. Table 4.2 shows each rule, their joint, goal and subset of LMA Features.

Table 4.2: Each of Heuristic Rule and their associated LMA Features.

Rule Associated LMA Features Rule Associated LMA Features

g1: Modifies Hip Height
Raises or lowers the character’s
Hip, changing the body volume.

Avg. Chest-Pelvis Distance (f8) ;
Avg. Total Body Volume (f10) ;
Avg. Lower Body Volume (f11) ;
Avg. Area Feet-Hips Triangle (f14) ;

g4: Modifies Elbows Positions
Pulls each Elbow towards or
away from the character’s body,
changing their upper volume.

Avg. Left Elbow-Hip Distance (f6) ;
Avg. Right Elbow-Hip Distance (f7) ;
Avg. Total Body Volume (f10) ;
Avg. Upper Body Volume (f12) ;

g2: Modifies the Chest’s Position
Raises or lowers the character’s
Chest, making their back appear
slumped over or straight.

Avg. Chest-Pelvis Distance (f8) ;
Avg. Total Body Volume (f10) ;
Avg. Upper Body Volume (f12) ;

g5: Modifies the Feets’ Positions
Increases or decreases the
distance between each Foot,
changing the stride length.

Max Stride Length (f3) ;
Avg. Total Body Volume (f10) ;
Avg. Lower Body Volume (f11) ;
Avg. Area Feet-Hips Triangle (f14) ;

g3: Modifies the Hands’ Positions
Pulls each Hand towards or away
from the character’s body. Also
raises or lowers each Hand
towards the character’s chest.

Max Hand Distance (f0) ;
Avg. Left Hand-Hip Distance (f1) ;
Avg. Right Hand-Hip Distance (f2) ;
Avg. Left Hand-Chest Distance (f4) ;
Avg. Right Hand-Chest Distance (f5) ;
Avg. Total Body Volume (f10) ;
Avg. Upper Body Volume (f12) ;
Avg. Area Hands-Neck Triangle (f13) ;

g6: Modifies Neck Tilt
Tilts the character’s Neck
towards or away from their chest.

Avg. Neck-Chest Distance (f9) ;
Avg. Total Body Volume (f10) ;
Avg. Upper Body Volume (f12) ;

36

The coefficients associated with each rule are computed by finding the value that minimizes the

distance between the corresponding subset of recorded and generated LMA features. For example, rule

g1 aims to modify the position of the character’s Hip joint. To compute c1, the coefficient associated with

rule g1, we find the value that minimizes the difference between the values of all recorded and generated

LMA features that pertain to the hips. For coefficient c1, these features include f9, f11, f12, f13 and f15.

All coefficients are initialized at 1.0 and the objective function we want to minimize is the SSE between

the current feature values and the generated ones. Equation

∑
t

∥ f̂ − ftc ∥2 (4.1)

is what we’re trying to minimize, where f̂ is the generated LMA Feature vector, ft the reference anima-

tion’s LMA Feature vector at keyframe t and c the coefficient that we want to optimize for.

In terms of functioning, the Motion Synthesis module begins by collecting all of the baseline anima-

tion’s LMA Features, computed by the LMA Feature Extraction Module while the animation is playing.

Besides these features, the module also stores each of the individual frames’ data, in the form of the

character’s joint positions, rotations and velocities. Whenever new PAD coordinates are specified, a new

process is started in a thread parallel to the main motion display. Using the new specified PAD coor-

dinates the Motion Synthesis module calls the PAD to LMA Mapper to generate a new set of 25 LMA

Feature values. After generating a set of LMA feature values, the module uses them, in conjunction with

the baseline animation’s recorded LMA Features, to compute the heuristic rule’s coefficients. Each rule

is then called sequentially to compute and output a set of positions/rotations for each of the core joints.

These changes can then be passed along to the Inverse Kinematics Solver in order to determine the

character’s new pose.

Joint changes produced by the Motion Synthesis module are synthesized at each frame when the

character controller is Policy-Based or for all keyframes as a batch when the controller is Kinematic.

This is because when using a Kinematic controller we have access to the character’s exact pose at each

keyframe, since we are reading directly from a mocap file, meaning we can compute all changes at once

and then interpolate between the altered keyframes. For a Policy-Based controller this is not the case

since each pose is generated at each frame, so changes have to be computed on a per-frame basis.

4.3.3 Inverse Kinematics Solver

The Inverse Kinematics Solver module is the last step of the Motion Synthesis subsystem pipeline and

is the one that actually synthesizes the new pose for the character. It takes as input the generated core

joints positions and rotations provided by the Motion Synthesis module and the character’s current pose.

A new pose is then generated using Inverse Kinematics by trying to place the character’s joints as close

37

as possible to their desired positions, whilst maintaining the baseline pose. The Inverse Kinematics

Solver also keeps in mind the character’s body restraints in order to avoid generating unnatural poses.

The synthesized poses returned by the Inverse Kinematics Solver can be used in lieu of the baseline

animation’s regular pose at their corresponding time-step. By superimposing these generated poses

over the reference ones we are effectively altering the character’s motion and, by proxy, its expressed

emotion therefore completing the motion synthesis portion of the EEMC system. Figure 4.5 shows

an example of the result of our motion synthesis, with the rightmost character displaying the baseline

motion in a “Neutral” emotion and the leftmost using the altered motion for the emotional coordinates

corresponding to “Tired”.

Figure 4.5: Example of an altered motion to convey the feeling “Tired” (left) and the baseline motion (right).

4.4 System Showcase Modules

To prototype and showcase the system’s capabilities additional sub-modules were developed. Whilst

these are not the main focus of the EEMC system they are still important to mention since they provide

a way for users to interact with the underlying framework. The included showcase modules consist of

an automatic motion learning module and a motion display and user interaction interface.

4.4.1 Motion Learning

The SpaceTime Bounds Motion Learning module [39] is used to generate new character controller

policies in order to showcase the system’s ability to work with physics-enabled non-kinematic character

controllers. This module can generate character controllers in the form of policies, able to control a

character, making it mimic the given reference motion, provided via a mocap file, in a physics-enabled

environment. Figure 4.6 compares 3 frames from a learned policy-controlled motion to their counterparts

38

at the same time-step in the reference animation. It should be noted that this module can be bypassed

entirely by simply providing the system with a mocap file directly. By doing so the system will be initialized

with a kinematic character controller instead of a policy-based one.

(a) Frames from a kinematic-controlled reference
character

(b) Frames from a learned policy-controlled char-
acter

Figure 4.6: Frames from a character performing the same motion with different controllers.

4.4.2 User Interface

The User Interface aims to provide a visual representation of the EEMC system, showing a virtual

character performing a motion, outputting the Emotional Classification results and allowing users to

input new desired PAD coordinates for Motion Synthesis. It consists of 2 parts - the Motion Display

window and the Motion Controller & Emotion Classifier GUI as displayed in Figure 4.7.

Figure 4.7: A character performing a motion and the GUI used to trigger the EEMC.

39

Firstly, when starting a program the user is informed that the pretrained Emotion Classification and

LMA Feature Generation ML models are being loaded, as shown in Figure 4.8. While this happens, the

animation is deterred from starting and the remaining User Interface components sit idly awaiting for the

models to finish loading. As such, all user interaction over the Main Display window and GUI is disabled.

(a) The loading window when the pro-
gram first starts

(b) The loading window after the emo-
tion prediciton models have fin-
ished loading

Figure 4.8: Our ML model loading display.

The main Motion Display window, presented in Figure 4.9, contains an environment and a character

displaying the animation the system was initialized with. Additionally, we provide the option of starting

the environment with two characters, with one being the target for our Emotional Motion Synthesis and

the other being used to display the baseline reference motion. In terms of interaction, users can fully

rotate the camera and zoom in and out. This window, alongside the rest of the system, stays open until

manually closed by a user, even if the animation has finished playing.

(a) Motion Display with one character (b) Motion Display window with a main (left)
and a reference (right) character

Figure 4.9: The Motion Display window.

The second half of the User Interface consists of the Motion Controller & Emotion Classifier GUI. This

is an additional window, detached from the Main Display one, which the user can move and position at

will. The GUI - shown in Figure 4.10 - has three main functions. First, it automatically gets the most up

to date emotional predictions from our animation’s main loop and shows them to the user. It individually

40

presents the predicted values for the Pleasure, Arousal and Dominance coordinates. It also uses these

coordinates to find the closest discrete emotion from our dataset’s list of emotions. The discrete emotion

is colour coded green, yellow or red depending on how closely its emotional coordinates approximate

the predicted ones. Secondly, at the bottom of the GUI we can find useful system state information. The

user is informed of whether the animation is running for the first time, is looping or has finished playing,

whether emotion prediction is ongoing or stopped and whether our motion synthesizer is computing

changes to the character’s movements or in standby. Thirdly, and most importantly, this window allows

users to specify new desired emotional coordinates. This can be done through the three provided

emotional coordinate sliders. For ease of use we also provided six template emotion buttons. Clicking

any of these will automatically change the sliders into the coordinates corresponding to the clicked

button’s emotion. In order to start synthesizing the motion changes the user has to click the “Confirm”

button - which only becomes available after the animation has looped once - at which point the Motion

Synthesis module gets activated and starts changing the character’s motion in real time.

Figure 4.10: The main GUI.

41

42

5
Implementation

Contents

5.1 Dataset . 45

5.2 LMA Feature Extraction . 47

5.3 LMA to PAD Mapping . 49

5.4 PAD to LMA Mapping . 53

5.5 Motion Synthesis . 56

5.6 Inverse Kinematics Solver . 57

5.7 Support Modules . 60

43

44

This chapter goes over how we went about implementing our system. We go into detail on how the

system’s main modules were implemented, what the dataset consisted of and what some of the major

engineering challenges faced were.

5.1 Dataset

The Bandai-Namco-Research Motion Dataset [7] was utilized to train each of the system’s ML models.

This data consists of Bounding Volume Hierarchy (BVH) files describing a wide array of motions such as

walking, running, kicks and dances running at 30 frames per second. Each animation was performed in

order to convey a specific style like proud or masculine. The dataset is organized into two sub datasets,

with Bandai-Namco-Research Motion Dataset-1 containing 17 different types of motions in 15 different

expression styles and Bandai-Namco-Research Motion Dataset-2 having 10 different motions, focused

around locomotion and hand actions (such as waves), in 7 unique styles. Figure 5.1 shows some of the

animation styles included in the Bandai-Namco-Research Motion Dataset.

Figure 5.1: Animations from the Bandai-Namco-Research Motion Dataset [7].

This dataset was chosen for a multitude of reasons. For one it was publicly available and free to use

under the Creative Commons Public Licenses. Secondly it provided us with a plethora of high quality

animations, having been recorded at Bandai Namco’s own high-end motion capture studio with motions

performed by professional actors. The data was also post-processed to remove any artifacts. Thirdly,

despite not covering the entire emotional spectrum of the PAD model, the dataset still contains a fair

amount of emotional variety which was necessary to train the EEMC’s ML models.

Before usage the dataset was first culled and prepared using the process described in Figure 5.2. As

our efforts were primarily focused on locomotion type animations, only Walking, Running and Dashing

animations were kept and converted into a Deepmimic-friendly format [36,43].

45

Figure 5.2: The process of converting the Dataset’s BVH files into a collection of usable LMA Feature sets.

The original dataset’s labels were mapped into corresponding emotions and PAD coordinates [25].

The values chosen for the emotional coordinates were inspired by previous discrete emotion to PAD

mapping efforts [6,25,68] with minor adjustments to better fit the dataset’s animations. Table 5.1 speci-

fies each of the label-emotion mappings, coordinates and number of samples per emotion. The subscript

present in certain labels indicates whether that label originally belonged to the Bandai 1 or 2 dataset.

This resulted in 468 different animations in 14 emotions, exemplified in Figure 5.3.

Figure 5.3: Example of 4 motions from our dataset expressing 4 different emotions.

After having been labeled, each of the animation’s LMA Features were then extracted using the LMA

Feature Extractor Module. In the end, a total of 78551 LMA Feature Sets were retrieved and labeled

according to their corresponding animation’s PAD coordinates. These feature sets comprised the data

that was then used to train our system’s ML models.

46

Table 5.1: Conversion from the original motion styles to emotions and emotional coordinates.

Original Style Emotion PAD Coordinates No. Samples
Normal Neutral (0.05, -0.05, 0.0) 28324
Tired1 Tired (0.1, -0.7, -0.2) 1749

Exhausted2 Tired 2 (-0.1, -0.75, -0.15) 28457
Old1 / Elderly2 Exhausted (-0.1, -0.6, -0.15) 31651

Angry1 Angry (-0.5, 0.8, 0.9) 1371
Happy1 Happy (0.8, 0.5, 0.15) 1531

Youthful2 Happy 2 (0.6, 0.4, 0.1) 25939
Sad1 Sad (-0.6, -0.4, -0.3) 2406

Proud1 Proud (0.4, 0.2, 0.35) 2174
Giant1 Confident (0.3, 0.3, 0.9) 1430

Masculine1 Confident 2 (0.25, 0.15, 0.4) 1239
Masculine2 Confident 3 (0.3, 0.4, 0.6) 26089

NotConfident1 Afraid (-0.6, 0.7, -0.8) 2200
Active Active (0.1, 0.6, 0.4) 28564

5.2 LMA Feature Extraction

The LMA Feature Extraction module is responsible for taking in frame data from the main motion display

loop and extrapolating the animation’s LMA Feature values. This module is primarily used while the

system is running to provide the Emotion Classifier and Motion Synthesizer modules with features to

use in their corresponding ML models. The extractor can also be used separately from the main sys-

tem, having been utilized to extract the Bandai-Namco-Research Motion Dataset [7] animation’s LMA

features, which were, in turn, used to train the LMA to PAD and PAD to LMA ML models.

This module provides several configurable parameters that alter its behavior, from defining whether

features should be saved onto a file or stored in memory while the program is running, to whether or

not there should be an initial buffer of ignored frames, useful for animations that have a windup time

before starting. The full list of parameters is showcased in Table 5.2. The LMA extraction rate is a

particularly relevant setting. By default the module extracts features at every fifth frame interval, which

for our motion dataset corresponded to every keyframe. A different extraction rate can be defined to

fit a different frame-rate or key frame interval by specifying a new pooling rate in seconds. When this

happens, the module computes how many frames are displayed per second using the frame’s duration

parameter and uses it to compute the corresponding frame interval between LMA feature extractions.

In terms of implementation, the LMA Feature Extraction’s main function has to be called each time a

new animation frame is displayed or whenever a new pose is applied to the virtual character. The module

stores the current frame’s data internally. After a number of frames equal to the defined extraction interval

- by default every fifth frame - has been stored the module takes the cached data and uses it to compute

the values of the 25 LMA Features. Feature computation is done through several internal math functions

including, but not limited to, velocity and acceleration estimation and triangle area, box volumes and joint

47

Table 5.2: Configurable parameters of the LMA Feature Extractor module.

Parameter Type Description

append to outfile boolean Whether or not the computed features should be saved to a file.

outfile string Path to the file features should be saved to. Only relevant if append to outfile is set to True.

pool rate float
Rate at which LMA features should be extracted, in seconds.
If set to -1 LMA Features will be extracted every 5 frames.
If set to -2 LMA Features will be extracted every 15 frames.

label tuple of 3 floats PAD Label associated with the extracted LMA Features.

ignore amount integer Number of frames that should be ignored at the start before LMA Feature extraction can begin.

round values boolean Whether or not the computed feature values should be rounded.

write mocap boolean Whether or not the provided frame data should be written to a file.

write mocap file string Path to the file provided frame data should be saved to. Only relevant if write mocap is set to True.

distance calculation. The generated features are then joined together into a set and output to be used

by the system’s other modules. This output comes in the form of the set described in Listing 5.1.

Listing 5.1: The LMA Feature Extraction output.

1 {
2 "frame counter": index of the frame at which LMA features were computed,
3
4 "label": PAD Emotional Coordinates (3D),
5
6 "lma features": [
7 max hand distance (1D),
8 average l hand hip distance (1D),
9 average r hand hip distance (1D),

10 max stride length (distance between left and right foot) (1D),
11 average l hand chest distance (1D),
12 average r hand chest distance (1D),
13 average l elbow hip distance (1D),
14 average r elbow hip distance (1D),
15 average chest pelvis distance (1D),
16 average neck chest distance (1D),
17 average total body volume (1D),
18 average lower body volume (1D),
19 average upper body volume (1D),
20 triangle area between hands and neck (1D),
21 triangle area between feet and root (1D),
22 l hand speed (1D),
23 r hand speed (1D),
24 l foot speed (1D),
25 r foot speed (1D),
26 neck speed (1D),
27 l hand acceleration magnitude (1D),
28 r hand acceleration magnitude (1D),
29 l foot acceleration magnitude (1D),
30 r foot acceleration magnitude (1D),
31 neck acceleration magnitude (1D)
32]
33 }

A complementary program for mass feature extraction was also included. This script - Mass Kine-

matic LMA Extractor - allows for the sequential extraction of the LMA features from several mocap files

48

and was primarily utilized to extract the Bandai-Namco-Research Motion Dataset [7] animations’ LMA

Features. By specifying an input directory - path to the directory containing mocap files - and output

directory - path to the directory where files with the LMA Features will be stored - users can easily ex-

tract the LMA features of several BVH files in a row. Users can also specify paths to Meta Files, which

will store a list of every output file’s names and emotions. The name and emotion of each output file is

inferred from the original’s name which should follow the nomenclature “<emotion > <file name>.bvh”.

5.3 LMA to PAD Mapping

To perform the task of Emotional Coordinate Prediction a set of Gradient Tree Boosting Regressors

was trained to map the motion’s LMA Feature set values into corresponding PAD coordinates. To train

each of the LMA to PAD Gradient Tree Boosting Regressors a dataset of LMA Features extracted from

the Bandai-Namco-Research Motion Dataset [7] was used. Models were trained and tested with both

LMA Features extracted at every fifth frame - which corresponded to each animation’s keyframe - and

features extracted uniformly every half a second - which corresponds to every 15 frames, since the

dataset’s animations all ran at 30 frames-per-second.

Prior to training the models, data analysis and preparation steps were performed. By looking at the

data’s sample distribution over emotions we decided to experiment with data balancing using under-

sampling and Synthetic Minority Oversampling Technique (SMOTE) [11]. As mentioned in the previous

section, feature selection was also performed, based on both variance and correlation analysis, resulting

in the finalized set of 25 LMA Features. The correlation between each feature and the three individual

target PAD coordinates was also analyzed, noting that some features correlated very little to certain co-

ordinates, but very highly to others. For example, the average triangle area between the hands and neck

had a fairly high correlation value of 0.33 with the Dominance coordinate but only a 0.04 with Arousal.

Taking this into consideration we experimented with creating subsets of the LMA features for each re-

gressor, using only features with a high correlation to the corresponding target coordinate. Finally we

did outlier detection using Z-Score evaluation [57] and standardized the data [54].

We generated several datasets for every possible combination of each of the aforementioned data

preparation pipeline steps using either the 5 or 15 frame LMA Feature extraction rate. In the end we

noted that our models tended to perform better with just Standardization and no other additional prepa-

ration steps, using LMA Features extracted every fifth frame. We believe data balancing through under-

sampling was removing too many samples from the dataset leading to a lack of data, whilst SMOTE was

generating too many repeated samples. The usage of different subsets of features for each regressor

seemed to harm the performance possibly due to the fact that, despite not correlating as highly to the

target variable directly, the features removed from each subset nonetheless helped compose the full set

49

of inputs, providing vital information for granular emotional discernment. Outlier detection neither hin-

dered nor improved the results for the most part as only a very small amount of samples ended up being

removed. As to why the features extracted every keyframe performed better than every 0.5 seconds,

which in our animations corresponds to roughly every 15th frame, we believe that, aside from generating

less overall samples, this quicker extraction frequency failed to capture the slight nuances between shifts

in the character’s pose as well as the smaller, every keyframe extraction rate.

The models were built using XGBoost [12]. Features were shuffled and split into a Train/Validation

and Test set. In total, 80% (62841 samples) of our data was used for Training and Validation and

20% (15710 samples) was left for for Testing. In order to find the optimal hyper parameters for each

of regressor we used Random Search 10-Fold Cross Validation [8]. Table 5.3 shows which hyper

parameters were tuned and their experimented values. The final trained models were evaluated using

the Test set and managed to accomplish a MAE of 0.02, 0.06 and 0.03 using the Test set for the Pleasure,

Arousal and Dominance coordinates correspondingly. Each coordinate can range between [−1.0, 1.0]

meaning that, even on our worst performing coordinate, we still managed to achieve a model with a MAE

under 5% of the total spectrum. In terms of MSE all 3 of our models managed to score values under

0.02 over the Test set, with Pleasure scoring 0.002, Arousal 0.013 and Dominance 0.004.

Table 5.3: All hyper parameters that were tuned using Random Search Cross Validation for each regressor.

HyperParameter Tested Values Description Argument Type Description

learning rate [0.01, 0.05, 0.1, 0.3, 0.5]
Default: 0.3

Controls how much the model
is allowed to change at each
step in response to the
estimated error. The lower
the value the more
conservative the model is,
reducing the odds of
overfitting but slowing the
learning process

min child weight [1, 5, 11, 21]
Default: 1

Minimum sum of instance
weight needed in a child
node. When the tree
partition step results in a
leaf node with the sum of
instance weight less than
min child weight then the
parent node won’t be further
partitioned.

subsample [0.75, 1]
Default: 1

Subsample ratio of the training
samples. A 0.75 subsample
value means that prior to
training the trees at each
iteration 75% of training data
is sampled and the rest is
discarded.

gamma [0, 0.001, 0.01]
Default: 0

Minimum estimated error
reduction required to partition
a leaf node of the tree. The
higher the value, the more
conservative the model will
be as a higher error reduction
will be required to make the
model more complex.

max depth [3, 6, 10, 15]
Default: 6

Maximum depth of the trees.
The higher the depth the
higher the complexity
increasing the odds of
overfitting.

colsample bytree [0.75, 1]
Default: 1

Subsample ratio of features
when constructing each tree.

alpha [0.0, 0.25]
Default: 0 L1 regularization value. lambda [1.0, 1.25]

Default: 1 L2 regularization value.

The line graphs in Figure 5.4 present the predicted and true values of 100 random samples from the

Test set, ordered by ascending value. As can be seen, regardless of model and coordinate, the silhou-

ette of the predicted values closely follows the true values’ one showcasing how close our predictions

50

manage to get to the correct values for each sample. Figure 5.5, on the other hand, shows the predicted

emotional coordinates of 1000 random samples from our Test set for each emotional pairing and on the

PAD 3 Dimensional coordinate system. Each sample is coloured according to its true emotion. As we

can see, some predictions do stray slightly from their real emotional coordinates, but they still fall into

well defined emotion clusters. Moreover, they seldom stray from the correct octant in the 3D model.

Figure 5.4: The predicted and true values of the Pleasure, Arousal and Dominance of 100 random sorted samples
from the Test set.

It should be noted that mocap data consists of high-frequency “continuous” time series, in the sense

that frames from the same animation are neighbours of each other and may present some form of

sequential similarities. This same line of thought can be extended to our LMA Feature dataset. This

may lead to an issue where, when data is randomly split as aforementioned, the train and test sets

end up containing neighbouring LMA feature sets belonging to the same animation. This in turn could

mean that the final results obtained over the test set could be good, solemnly because the models are

overfitting to the train data, and the test set is comprised of similar features. To counteract this, and

to make sure that the PAD regressors were not performing well simply due to dataset overfitting, we

experimented with splitting animations directly into either the train and test set, rather than doing the

aforementioned LMA Feature-level split. This means that the LMA Feature sets in the train set come

from entirely different animations from those in the test set, effectively removing the “frame neighbour

51

Figure 5.5: Prediction results of samples from our Test set. Each sample is coloured according to their real emotion
and placed in the coordinate space according to its predicted emotional coordinate.

52

similarity” issue. The regressors were then trained and tested using these new dataset splits. Effectively,

there was no apparent major performance hit, with the models achieving MAEs of approximately 0.02,

0.07 and 0.05 and MSEs of 0.01, 0.025 and 0.02 for the Pleasure, Arousal and Dominance coordinates,

correspondingly. This proves that the initially presented results weren’t caused by an overfitting to the

dataset. The reason as to why the sequential similarity nature of frame data seems to be a non-issue

may be due to the fact that our models are not being trained with frame data directly, but instead using

LMA Features extracted every fifth frame. As such, two neighbouring LMA features represent a fairly

high time difference making them different enough from each other. This may have become an issue had

we used LMA features were to be extracted over a smaller frame-step, for example, every two frames.

5.4 PAD to LMA Mapping

The PAD to LMA ML models are responsible for converting the input PAD coordinates into a set of

representative LMA feature values. This was implemented in two distinct manners - a “Direct” approach

where the PAD coordinates are directly converted into LMA feature values using a set of regressors,

and an “AutoEncoder” approach which adds an intermediate step, first mapping the input coordinates

into Latent Features, and then decoding them into the LMA values. Other methodologies were also

experimented with, notably the usage of Generative Adversarial Networks (GAN) [18] and Variational

AutoEncoders (VAE) [30] for LMA feature generation, but the aforementioned techniques were the ones

that netted the best PAD to LMA conversion results.

Each of the ML models, regardless of methodology, were trained with the same dataset. Rather than

using the Bandai-Namco-Research Motion Dataset [7] with the PAD coordinates as input and the LMA

Feature sets as output, we instead built a new dataset using our LMA to PAD Gradient Tree Boosting

regressors. First the dataset was standardized. Then we removed the PAD coordinates from the dataset

and fed it to our LMA to PAD regressors, generating new predicted coordinates and adding them to the

dataset. The idea behind this is that, although each animation in the dataset was labeled according to its

emotion and corresponding emotional coordinates, not all motions display the same emotional intensity.

For example, all “Sad” walks were labeled with the exact same PAD values - (−0.6,−0.4,−0.3) - but in

reality, some of them might present different intensities, like an even lower Pleasure value, or a slightly

higher Arousal. By using our predicted coordinates rather than the original labels we hope to capture

these nuances and introduce more varied data to train our PAD to LMA models with. It should be noted

that whilst the final models were trained using this new dataset, we also experimented with using the

original labels, but realized that it produced worse results for either approach.

53

5.4.1 Direct LMA Feature Generation

The Direct approach was our first attempt at mapping PAD coordinates into LMA Feature Sets. In

this methodology we simply trained a set of 25 Gradient Tree Boosting regressors to map our 3 PAD

coordinates into each of our LMA features. To generate new features the input PAD coordinates are

fed to each regressor individually. The regressors then output their corresponding LMA feature. This

process is described in Figure 5.6. The Gradient Tree Boosting regressors were built using XGBoost

[12]. Our data was shuffled and split into a Train/Validation and Test set, each containing 80% (62841)

and 20% (15710) samples accordingly. The optimal hyper parameters for each regressor were found

using Random Search 10-Fold Cross Validation [8] in a manner similar to the one used to find the

optimal hyper parameters for the LMA to PAD regressors.

Figure 5.6: An overview of the Direct approach.

After training, the models’ performance was evaluated by computing the MAE and MSE of each

regressor over the Test set. We noted that for a majority of LMA Features, the reported MAE values were

smaller than 0.1. The LMA Features which performed the worst were “Max Hand Distance” and “Max

Stride Length”, managing an absolute error of 0.17 and 0.15 accordingly. In terms of MSE, no regressor

presented an error over 0.03. Additionally, we also used our LMA to PAD to convert the generated

LMA Features back into PAD coordinates in order to evaluate how truly representative the generated

features were of their intended emotional coordinates. Doing so and comparing the predicted PAD

coordinates of the generated features with the original PAD coordinates that were used to generate them

we managed to achieve an MAE under 0.20 for both Pleasure (0.20) and Dominance (0.18) coordinates

and 0.30 for the Arousal. All in all, the features generated using this approach present some quality.

Nevertheless we hoped to achieve better results than this, and as such the second approach, based

around AutoEncoders, was created.

54

5.4.2 AutoEncoder LMA Feature Generation

The second approach we implemented was based around the usage of AutoEncoders. The idea was

that the problem of mapping PAD coordinates into LMA presented a fair share of complexity due to the

fact that we’re trying to infer 25 different outputs from just 3 inputs. As such, using an AutoEncoder to

reduce the output dimensionality would reduce the overall complexity of the problem and improve the

PAD-LMA mapping performance [63,64].

The entire process of going from PAD features into Latent Space features and how it then decodes

these features into our usable LMA Feature set is shown in Figure 5.7. An Autoencoder was used to

convert the 25 LMA Feature space into a 5 dimensional Latent Feature space - l1, l2, l3, l4, l5 - and vice-

versa. We then trained a set of 5 Gradient Tree Boosting regressors to convert our PAD coordinates into

each of these Latent Features. To generate new features we first convert the PAD coordinates into our

Latent Features. We then decode these Latent Features into a generated set of LMA Feature values

representing the desired emotional coordinates.

Figure 5.7: An overview of the AutoEncoder approach.

The reason behind using an additional set of regressors to go from PAD into our AutoEncoder’s Latent

Space comes from the fact that our goal is to convert PAD coordinates into LMA features, representative

of these coordinates. AutoEncoders, however, are specialized networks whose input and output is

the same. This means that the autoencoder converts LMA features into a Latent Representation, and

then back into LMA, meaning that we had to have some form of mapping the PAD coordinates into

the Latent Space. We attempted with forcing our Latent Space to be 3 dimensional and a one to one

representation of the PAD space but there is little to no way of directly influencing and manipulating the

Encoder network’s output to behave in this manner. Furthermore the Decoder’s performance suffered

from having such a small dimensional Latent Space. We also attempted to use Deep Neural Networks

to map directly from PAD coordinates into LMA features, and even to map PAD into the Latent Space

features generated by our Encoder, but results weren’t as good.

55

We began by training our Autoencoder Neural Network, built using Keras [15], with the architecture

illustrated in Figure 5.8. After training for 1024 epochs, we accomplished a mean absolute reconstruction

error of 0.17 on our Test set. We then generated a new labeled dataset using our PAD coordinates as

input and the latent features created by the Autoencoder as output. Using this new dataset we trained

the five regressors built using XGBoost [12]. The regressors were trained in a manner similar to those

for Emotional Classification and tuned using Random Search 10-Fold Cross Validation.

Figure 5.8: The Autoencoder architecture.

Through this AutoEncoder-based method we managed to achieve an overall mean absolute error of

0.19 between the predicted emotional coordinates of the generated LMA Feature set and the original

ones, with Pleasure presenting an MAE of 0.19, Arousal 0.24 and Dominance 0.14. Comparing these

error values to those from the Direct approach we can conclude that this more refined AutoEncoder

approach manages to outperform it by a significant margin. Nevertheless both approaches were kept in

the system with users being allowed to pick which LMA Feature Generation approach they wish to use

when initializing the program. This was done in order to compare the quality of the generated motions

of either approach through user testing as is further explained in Chapter 6.

5.5 Motion Synthesis

Given a new set of desired PAD coordinates we are then able to synthesize and apply motion changes

to the character in real time. Pose changes are computed in a multi-threaded process to avoid inter-

rupting or slowing down the running animation. Tweaking is done through a combination of LMA feature

56

generation and an algorithm based around a set of six heuristic rules used to output new desired core

joint positions - Hips, Chest, Hands, Elbows, Feet and Neck.

For motion synthesis to take place the animation has to have looped at least once. The reason for

this is due to the fact that our motion synthesis takes into consideration the baseline motion, as such, we

need to store the animation’s entire frame data. If the system was meant to only work with a Kinematic

Controller reading directly from an animation file this would not have to be the case. since all data would

be readily available from the start. Because we also wanted the system to be able to apply motion

changes to a learnt policy-based controller in a physics-enabled environment we need to first run the

animation at least once to store the necessary data.

The full set of Heuristic Rules, alongside their coefficients and associated LMA Features, can be

seen in Table 5.4. Coefficient minimization is done right after the LMA Features corresponding to the

input PAD coordinates are generated. Minimization is solved using Powell’s method [44] provided by

the SciPy [61] optimization library. The underlying idea behind each heuristic rule is that, by comparing

the baseline animation’s LMA features - which reflect the character’s current emotion - with the gen-

erated ones - which correlate to the new desired emotion - we can then use coefficients to decide in

which manner each joint should be altered. To exemplify, rule 1 - g1 - changes the hips’ height. The

coefficient associated with rule 1 represents a comparison between relevant baseline and generated

LMA Features. If this coefficient value is larger than one then that means that the current animation’s

associated LMA Features are smaller than their corresponding generated counterparts - chest-pelvis

height, body volumes and so on - and as such, we want to increase them by increasing the hip’s height

and vice-versa. The new height is computed simply by adding the coefficient minus 1 to the current

height. We subtract by one since if the coefficient is larger than one that will keep the value positive,

hence increasing the height, otherwise the value becomes negative, lowering the current height. The

coefficient’s value also gets reduced in order to avoid generating extreme poses where the hips would

be on the ground or too high up. A similar thought process was used to design the remaining rules.

5.6 Inverse Kinematics Solver

Whenever new joint position and rotations are synthesized, a new pose that respects these changes

and that can be applied to the character has to be generated. To do this we utilize an Inverse Kinematics

Solver module. This module runs a separate instance of PyBullet [17], without its graphical display

enabled, containing a similar character model to the one in the main display loop. After generating the

desired joint positions the Inverse Kinematics Solver is provided with the character’s current pose so

that it can update its own character to be synchronized with the baseline. We then provide it with the

newly computed desired joint positions and rotations and use PyBullet’s integrated Inverse Kinematics

57

Table 5.4: Motion Synthesis rules.

Rule Coefficients Rule Coefficients

g1(c1): Modifies the hips height

r’x = rx
r’y = ry + (c1 - 1.0) * 0.08
r’z = rz

Where r is the current pelvis position
and r’ is the new desired pelvis position

c1: f9, f11, f12, f15

g4(c4): Modifies the elbow positions

le’x = lex + dle-p x * (c4 - 1.0) * 0.5
le’y = ley + dle-p y * (c4 - 1.0) * 0.5
le’z = lez + dle-p z * (c4 - 1.0) * 0.5

re’x = rex + dre-p x * (c4 - 1.0) * 0.5
re’y = rey + dre-p y * (c4 - 1.0) * 0.5
re’z = rez + dre-p z * (c4 - 1.0) * 0.5

if ∥le’z - lez∥ < 0.15:
le’z = lez - 0.15

if ∥re’z - rez∥ < 0.15:
re’z = rez + 0.15

Where:
- le and re are the current left/right elbow positions,
- le’ and re’ are the desired left/right elbow positions
- dle-p and dre-p are unit vectors going from the
current left/right elbow positions to the pelvis

c4: f7, f8, f11, f13

g2(c2): Modifies the chest position

if c2 >1.0:
w = 0.025

else:
w = 0.1

n’x = nx - (c2 - 1.0) * w
n’y = ny + (c2 - 1.0) * w
n’z = nz

Where n is the current chest position
and n’ is the new desired chest position

c2: f9, f11, f13

g5(c5): Modifies the feet positions

if c5 >1.5:
c5 = 1.5

if c5 <0.5:
c5 = 0.5

lf’x = lex + dlf-rf x * (c5 - 1.0) * 0.2
lf’y = ley
lf’z = lez + dlf-rf z * (c5 - 1.0) * 0.2

rf’x = rex + drf-lf x * (c5 - 1.0) * 0.2
rf’y = rey
rf’z = rez + drf-lf z * (c5 - 1.0) * 0.2

Where:
- lf and rf are the current left/right foot positions,
- lf’ and rf’ are the desired left/right foot positions
- dlf-rf and drf-lf are unit vectors going from the
current left foot to right foot positions and vice versa

c5: f4, f11, f12, f15

g3(c3.1, c3.2): Modifies the hand’s positions

l’x = lx + dl-p x * (c3.1 - 1.0) * 0.5
l’y = ly + dl-p y * (c3.1 - 1.0) * 0.5
l’z = lz + dl-p z * (c3.1 - 1.0) * 0.5

r’x = rx + dr-p x * (c3.1 - 1.0) * 0.5
r’y = ry + dr-p y * (c3.1 - 1.0) * 0.5
r’z = rz + dr-p z * (c3.1 - 1.0) * 0.5

l’x = l’x - dl-h x * (c3.2 - 1.0) * 0.5
l’y = l’y - dl-h y * (c3.2 - 1.0) * 0.5
l’z = l’z - dl-h z * (c3.2 - 1.0) * 0.5

r’x = r’x - dr-h x * (c3.2 - 1.0) * 0.5
r’y = r’y - dr-h y * (c3.2 - 1.0) * 0.5
r’z = r’z - dr-h z * (c3.2 - 1.0) * 0.5

Where:
- l and r are the current left/right hand positions,
- l’ and r’ are the desired left/right hand positions,
- dl-p and dr-p are unit vectors going from the
current left/right hand positions to the pelvis
- dl-h and r-h are unit vectors going from the
current left/right hand positions to the chest

c3.1: f1, f2, f3, f11, f13, f14
c3.2: f1, f5, f6, f11, f13, f14

g6(c6): Modifies the neck tilt

nr’x = nrx
nr’y = nry + (c6 - 1.0) * 1.5
nr’z = nrz

Where:
- nr is the current neck rotation in Euler
- nr’ is the desired neck rotation in Euler

c6: f10, f11, f13

58

functionalities to output a new synthesized pose, which can then be applied to the main character. This

new pose tries to get the core joints as close as possible to their desired synthesized counterparts,

while still respecting the character’s body restraints to avoid unnatural postures. Figure 5.9 provides a

demonstration of the usage of Inverse Kinematics to change the position of a character’s joint. In this

particular example we tasked the Inverse Kinematics Solver with lowering the height of the character’s

left wrist. The output pose had the character shift its weight and curve to the left in order to naturally

achieve the desired left wrist position.

(a) A character’s baseline pose (b) A character’s altered pose

Figure 5.9: Showcase of the usage of Inverse Kinematics to alter a character’s joint (left wrist) position.

There were a few problems that had to be solved for the Inverse Kinematics to work. Firstly, it should

be mentioned that the humanoid model that SpaceTime Bounds [39] and DeepMimic [43] use, structured

as a Unified Robot Description Format (URDF) file, defines its joints as spherical joints. These joints

possess 3 Degrees of Freedom, meaning they are allowed to rotate in all 3 axis and their positions are

specified as quaternions. The problem is that, while PyBullet is compatible with these joints, its Inverse

Kinematics solver function is not. As such we had to create a copy of our main humanoid model where

we replaced each spherical joint with a set of three linear ones. Each of these joints is only allowed to

rotate in a single axis and their positions are represented as an Euler angle. We now had the issue that

our main character’s model was inherently different from our our Inverse Kinematics one. Because of

this, all joint position specifications in the extracted frame data came in the form of quaternions, which

had to be converted into a set of 3 Euler angles - one for each axis. These angles could then be applied

directly to the Inverse Kinematics character’s linear joints. The order in which these rotations are applied

also matters [19]. For our set of linear joints to perfectly correspond to its spherical joint counterpart we

had to apply rotations to the Z (Yaw), Y (Pitch) and X (Roll) axis, in this order.

59

5.7 Support Modules

Aside from the main modules responsible for performing Emotional Classification and Motion Synthesis

our system counts with additional modules that are used to support and showcase the functioning of the

core components.

5.7.1 BVH To Deepmimic Converter

DeepMimic [43] utilizes a unique motion file structure. The issue with this is that most available mocap

data files are stored in the BVH standard and as such are incompatible with the DeepMimic system out of

the box. Our system was built over Spacetime Bounds [39], which in turn was built on top of DeepMimic,

and, as such, suffers from the same problem. DeepMimic’s mocap format are stored in JSON files as

can be seen in Listing 5.2. The first argument - “Loop” - can either be “none” or “wrap” depending or

whether or not the animation loops or stops after its done playing. The “Frames” list contains all each

of the keyframes data comprised of the character’s joint position and rotations and the duration of each

keyframe.

Listing 5.2: The DeepMimic motion file format.

1 {
2 "Loop": "none" or "wrap",
3 "Frames": [
4 [
5 duration of frame in seconds (1D),
6 root position (3D),
7 root rotation (4D),
8 chest rotation (4D),
9 neck rotation (4D),

10 right hip rotation (4D),
11 right knee rotation (1D),
12 right ankle rotation (4D),
13 right shoulder rotation (4D),
14 right elbow rotation (1D),
15 left hip rotation (4D),
16 left knee rotation (1D),
17 left ankle rotation (4D),
18 left shoulder rotation (4D),
19 left elbow rotation (1D)
20],
21]
22 }

In order to utilize the Bandai-Namco-Research Motion Dataset [7] we had to convert each of its BVH

mocap files into DeepMimic’s motion file format. To do so we built our BVH To Deepmimic Converter

module by adapting the preexisting Bvh2Deepmimic library [36] to work with our dataset’s character

skeleton and structure.

5.7.2 User Interface

The User Interfaced built to showcase the EEMC System’s capabilities consists of two components.

The first is a display window, which contains a virtual character performing the baseline animation the

60

system was started with. The second is the main GUI, which shows the current output of the Emotional

Classification and allows for the input of new desired PAD coordinates for Motion Synthesis. The GUI

also displays System State information regarding whether the animation has looped or ended, whether

the emotional classification is still ongoing or finished, and whether the system is synthesizing new

motion changes or not.

The Motion Display window was built using the PyBullet [17] graphical and physics engine. Upon

starting our system, this window is automatically open. After the ML models have finished loading, a

character is then shown performing the provided baseline animation in a virtual environment. This en-

vironment is either Kinematic or Physics-Enabled depending on whether the EEMC system was started

with a mocap file or a learned policy character controller. An additional reference character can also

be spawned. This character is impervious to the system’s motion changes, always displaying the base-

line motion using a Kinematic character controller. As shown in 5.10, the reference character is always

coloured in orange, whilst the main one is always painted green. This was done to make it easy to

distinguish between the two characters. Originally this reference character was only used to showcase

the similarities between a Policy-Based character controller and the original motion it learned from. Its

usage was then extended since it also proved useful at highlighting the impact of our Emotional Motion

Synthesizer, comparatively to the baseline animation.

Figure 5.10: A main (left) and reference (right) character’s performing an animation in the Main Display window.

The Motion Controller & Emotion Classifier GUI was developed using TKinter [38] and is used to

bridge users to the underlying EEMC framework. All of this window’s interactions and updates are han-

dled by a GUI Manager, which connects to the rest of the system both to collect Emotional Prediction’s

results, but also to inject new PAD coordinates into the Motion Synthesis subsystem. Whenever new

emotional coordinates are output by the Emotion Classification subsystem, the manager captures them

and shows them to the user, displaying each predicted coordinate individually, alongside the closest

discrete emotion. To find the closest emotion we compute the SSE between the PAD coordinates of

a preset list of emotions and the output predicted coordinates. The emotion with the smallest error is

61

shown and colour coded in accordance with how small this error was, as shown in Figure 5.11. The

closest emotion’s name is coloured green for errors under 0.03, yellow for under 0.05 yellow and red

otherwise. The preset list of emotions includes the emotions “Neutral”, “Tired”, “Exhausted”, “Angry”,

“Happy”, “Sad”, “Proud”, “Confident”, “Afraid” and “Active”, covering a wide portion of the PAD model.

Figure 5.11: The closest discrete emotion, colour coded according to how close it is to the predicted coordinates.

Motion Synthesis can be triggered through the GUI using its available sliders. For ease of use we

also included a set of predefined emotions. Clicking any of these simply inputs the emotion’s coordinates

into the corresponding coordinate sliders. An initial implementation had users specify coordinates by

inputting the desired values into text fields. These fields were then replaced with sliders to make the

interaction easier and to ensure only valid values, between −1.0 and 1.0 are inserted into the system.

The old and new interfaces for coordinate specification are shown in Figure 5.12.

(a) The old interface where coordi-
nates were specified via text

(b) The new interface where coordi-
nates are specified using sliders

Figure 5.12: The old and new way of specifying emotional coordinates for motion synthesis.

5.7.3 Motion Learning

The Motion Learning module is capable of generating a character controller in the form of a policy learnt

using the Spacetime Bounds [39] system. Unlike the other modules, this one is entirely independent

of the core system and is meant to be used to generate animations. These animations can then be

provided to the rest of the system to be used as a baseline motion for emotional tweaking.

62

Animations generated using this module come in the form of policies which take into account the

current state of the character, time step and reference motion in order to generate the character’s desired

joint rotations. Should the system be initialized with one of these learnt policies, characters will be placed

into a physics-enabled environment. In this instance, two characters are shown to the user, as seen in

Figure 5.13, one using a Kinematic controller simply showcasing the reference motion the policy was

trained with, and the other entirely controlled by the policy and subject to the environment’s external

physics forces, such as gravity.

Figure 5.13: Two characters being displayed with one (left) being controlled by a policy that learned to mimic the
reference animation showcased by the other (right) in a physics-enabled environment.

This module was entirely built over Spacetime Bounds [39] with no further modifications. As such the

policy controller consists of a neural network as explained in Chapter 3. In order to train a new policy

mocap data with the desired animation has to be provided to the module and certain training parame-

ters have to be specified through a JSON file containing all desired arguments. Table 5.5 contains all

possible training parameters and a description of what they do. The reference mocap file, which the

policy will aim to mimic, is specified through the task and model arguments. These reference files have

to be in a Deepmimic friendly format [36] and follow the naming scheme “model task.txt”. For exam-

ple for a walking animation using the default humanoid model, the reference mocap should be named

“humanoid3d walk.txt”. Listing 5.3 showcases an example of a complete arguments file used to train a

policy to control the humanoid3d character model to perform the reference running animation.

The Spacetime Bounds system has the capability of booting up several different types of environ-

ments aside from the regular “Spacetime” one, each with varying arguments [39]. For example the

“Energy Style” environment imposes additional constraints on the amount of energy the character is

allowed to display in order to audit the generated animation’s outcome. We, however, focused our efforts

solemnly towards the default “Spacetime” environment since additional tweaking of the animation was

to be performed in real time using our main EEMC system. Nevertheless, our system is able to func-

tion with any type of character controller generated using the Spacetime Bounds system, regardless of

environment type.

63

Table 5.5: All possible training arguments for the Motion Learning module.

Argument Type Description Argument Type Description

task env args The name of the motion task
(e.g Walk, Dance, Run). id meta Name of the training.

model env args The name of the virtual character’s
model. workers meta

Number of workers used to sample
data. Corresponds to the number of
environments that will be initialized
and used to train the policy in parallel.

engine env args The name of the physics engine
used during training. ckpt meta

Path to a previously paused training.
Used to resumetraining rather than
starting from scratch.

self collision env args Whether or not the body can
collide with itself.

enable draw env args Whether or not to provide a
graphical display during training. iter num train args Number of iterations the training

should run for.

heading vec env args
The XYZ vector specifying
which axis the character is
considered ”front”.

gamma train args

The discount factor. The closer the
value is to zero the more immediate
rewards are prioritized over possible
future rewards.

record contacts env args Whether or not to record all
registered contacts. use importance sampling train args Whether or not to use Importance

Sampling.

record torques env args Whether or not to record all
registered torques. num segments train args

Number of samples in each
sample pool used in
Importance Sampling.

use global root ori env args Whether or not to use the global
root orientation.

rel endeffector env args

Whether or not to compare the
policy controlled character’s end
effector positions and orientations
to the reference character’s when
checking by how much the
generated and reference pose’s differ.

noise model args
The standard deviation value of the
actor policy’s network’s noise layer
in the Actor-Critic architecture.

rel root pos env args

Whether or not to compare the
policy controlled character’s
root height to the reference
character’s when checking by how
much the generated and reference
pose’s differ.

with ffc model args

Whether or not to use the
FeedForward Controller portion of
the Policy network architecture.
This controller contains the joint
angles from the reference motion
stored and linearly interpolates them
during run time according to the
current animation timestep.

rel root ori env args

Whether or not to compare the
policy controlled character’s
local root orientation to the
reference character’s when
checking by how much the
generated and reference pose’s
differ.

use spacetime bounds env args Whether or not to use
Spacetime Bounds.

bound env args File specifying the
Spacetime Bounds to be used.

contact env args Specifies which joints are allowed
to make contact with the ground.

64

Listing 5.3: Example of a JSON file containing training arguments to learn to mimic a running animation using
spacetime bounds with the default humanoid character.

1 {
2 "env name": "spacetime",
3 "env args":
4 {
5 "task": "run",
6 "model": "humanoid3d",
7 "engine": "pybullet",
8 "contact": "walk",
9 "self collision": true,

10 "enable draw": false,
11 "record contact": false,
12 "record torques": false,
13
14 "use global root ori": true,
15 "heading vec": [1, 0, 0],
16 "use spacetime bounds": true,
17 "bound": "data/bounds/default.txt",
18 "rel root pos": false,
19 "rel root ori": false,
20 "rel endeffector": true
21 },
22
23 "model args":
24 {
25 "noise": 0.1,
26 "with ffc": true
27 },
28
29 "train args":
30 {
31 "iter num": 6000,
32 "gamma": 0.95,
33 "use importance sampling": true,
34 "num segments": 10,
35 }
36 }

After a policy training is complete we can use the generated character controller with the rest of the

system by specifying a new arguments file. This file simply contains the name of the task in order to load

the correct reference animation and the path to the generated policy, stored in the form of a compressed

tar file. Listing 5.4 contains an example of such an arguments file used to load the policy stored in the

file “walk training 1” trained to mimic the reference mocap file containing the “Walk ” motion.

Listing 5.4: Example of a JSON file containing arguments to start our system with a learnt physics-enabled
policy-based character controller.

1 {
2 "env name": "spacetime",
3 "env args":
4 {
5 "task": "walk"
6 },
7 "ckpt": "data/policies/bound scale/walk training 1tar"
8 }

65

66

6
Results & Analysis

Contents

6.1 Final System . 69

6.2 User Testing & Validation . 71

67

68

This chapter goes over the finalized system, showcasing how users can interact with it and what the

final outcome of the EEMC is. We also present the results of the user tests that were conducted to

evaluate the synthesized animation’s quality.

6.1 Final System

The EEMC framework was built in Python 3.8, using PyBullet [17] as the underlying engine. All ML

models were trained offline in a dedicated external server with two NVidia GeForce RTX 2080 Ti GPUs,

32GB RAM and a six-core AMD Ryzen 5 2600X 3.6GHz CPU. Emotional Classification and Motion Syn-

thesis is done in multithreaded processes and takes, on average, less than 3 seconds to execute and

apply, running in real time. The system’s code, results and other resources are publicly available1. A

video was also created and made available showcasing an overview of the system’s capabilities2. The

framework can be initialized with several configurable parameters as shown in Table 6.1. These param-

eters can be used to alter some of the system’s behaviors such as which motion synthesis methodology

is used or whether an additional reference character should be spawned.

Table 6.1: The EEMC system’s boot arguments.

Parameter Type Description

mocap string The path to the MoCap file or Learned Policy describing the baseline animation that will be displayed.

ms string
Options:[“ae”, “direct”] Specifies the type of Motion Synthesis methodology to be used. By default the AutoEncoder approach is used.

record lma string File name LMA Features should be recorded onto. If no name is specified then features won’t be stored in a file.

record mocap string File name frame data should be recorded onto. If no name is specified then this data won’t be stored.

show reference boolean Whether or not to spawn an additional reference character.

Aside from allowing for the real time Emotional Discernment and Emotionally Expressive Motion

Synthesis, the finalized work also includes complementary GUI and Motion Learning components to

showcase the system’s capabilities and allow users to easily interact with the underlying framework

without the need of any additional domain knowledge. Users can provide the system with a baseline

motion either via DeepMimic-friendly mocap files or using a learned character controller policy. The GUI

and motion display window are shown in Figure 6.1. The GUI shows the current results of the Emo-

tional Classification by displaying the predicted PAD coordinates alongside whichever discrete emotion

is closest to the predicted coordinates. To specify new desired PAD coordinates users can freely tweak

the corresponding sliders or select one of the available presets and hit the “Confirm” button.

1https://heroufenix.github.io/expressive_animations_web/
2https://youtu.be/QOfVkoZa5HM

69

https://heroufenix.github.io/expressive_animations_web/
https://youtu.be/QOfVkoZa5HM

Figure 6.1: The finalized GUI used to showcase the system.

Triggering the Motion Synthesis module alters the character’s motion in real time. Figure 6.2 show-

cases 4 generated motions synthesized from the same baseline animation. The “Confident” character,

for example, highly elevates their shoulders, widens their upper body volume and exposes their neck,

while the “Afraid” character raises their arms to protect their torso and slumps down, reducing its body

volume. A playlist of clips containing motions generated using the EEMC framework has been published

online3. Motion Synthesis can be performed using LMA Features generated either through the Direct

or AutoEncoder approach. Both methodologies work in real time and are done in a parallel process so

there is no performance impact on the motion display. The time it takes the models to load during the

system’s boot up does differ. The Direct approach takes much longer to load since it uses 25 different

Gradient Tree Boosting regressors, as opposed to the 5 of the AutoEncoder approach.

Figure 6.2: Four motions synthesized using the same baseline motion and 4 different desired emotions.

Our system works best when applied to a neutral baseline movement but it nevertheless works with

different base emotions. Both emotional classification and synthesis were trained and designed for

locomotion-type motions. Whilst they can still be applied to other types of animations without additional

3https://youtube.com/playlist?list=PLBchdrsdyMe_y7oUAzumcPc3P5ft3SMi4

70

https://youtube.com/playlist?list=PLBchdrsdyMe_y7oUAzumcPc3P5ft3SMi4

changes, the results won’t be as consistent. Motion Synthesis seems to suffer the most from this in

the quality of the generated motions, mostly due to the fact that our heuristic rules were purposefully

tweaked for locomotion type animations. Emotional Classification also suffers in the accuracy of its

predictions but still mostly manages to predict the motion’s correct octant within the PAD 3D space.

6.2 User Testing & Validation

User tests were conducted in order to evaluate the performance of the Emotionally Expressive Motion

Synthesis. We wanted to evaluate how the generated motions would compare against the ones from

the Bandai-Research Motion Dataset [7]. These reference motions were recorded with professional

paid actors performing motions in very specific emotional styles. Our aim was to infer the synthesized

motions’ quality by checking if there were any major statistical differences between the answers users

gave when presented with reference animation clips versus the generated ones. Furthermore we also

wanted to compare the two LMA Feature generation approaches to understand if one outperformed the

other in terms of emotional expression quality as perceived by users.

A set of video clips was created using our motion generation over both a Kinematic and a Policy-

Controlled physics enabled character and generating features with either the Direct or AutoEncoder

approach. Motions were generated to convey a subset of the Bandai-Research Motion Dataset’s [7]

emotions covering a wide spectrum of the PAD model - “Sad”, “Confident”, “Tired”, “Afraid”, “Angry” and

“Happy”. The overall intent was to check whether the generated motions managed to convey their in-

tended emotions as well as the reference mocap. To infer these, two distinct tests were conducted with

40 anonymous, paid participants 4 each. The tests consisted of online forms containing the aforemen-

tioned recorded animation clips mixed together and sorted randomly. Clips had their names redacted

and participants were never informed or able to tell the type of clip - reference mocap or synthesized,

kinematic or policy-based, generated using the Direct or AutoEncoder approach. The retrieved answers

were then compiled and studied through statistical tests performed using IBM SPSS [27].

6.2.1 Emotion Identification Task

The first set of participants were asked to view each clip and select which emotion they thought the

character was trying to express from a given list. The goal was to provide an initial insight towards how

easy the generated motions’ emotions were to identify. As such, a clip’s performance is better the higher

the percentage of participants that manage to correctly guess the character’s intended emotion. For

example, if a character is attempting to convey the feeling “Angry”, the more participants that answer with

4This work was partially supported by national funds through Fundação para a Ciência e a Tecnologia (FCT) with reference
FCT: UIDB/50021/2020 and Project SLICE reference: PTDC/CCICOM/30787/2017

71

“Angry”, the better that clip performed. The quality of each generation technique was then ascertained

by comparing its performance against each other and, more importantly, against the reference mocap.

The test’s results were gathered in the clustered bar charts shown in Figure 6.3. Looking at the

reference mocap we can see that most participants managed to correctly identify the emotions “Afraid”,

“Confident”, “Happy” and “Tired”, although not by a vast margin in most cases. “Happy” seemed to be

the most easily identifiable emotion with an overwhelming majority of participants being able to correctly

classify it. Moving on to our synthesized motions, using the AutoEncoder approach applied to a Kine-

matic character yielded results that were as good, and in some cases like for the emotion “Sad”, slightly

better than the reference mocap. These clips managed to have most participants select the correct

emotion in all cases but “Tired” which was the second most selected answer in its category, nearly tying

with “Sad” for first place. Even when paired with a Policy-based physics-enabled character, motions gen-

erated with this method presented decent results. The best performing emotions became “Confident”,

“Sad” and “Tired”. The other emotions were usually the second or third most guessed in their cate-

gories. In general, motions generated with the AutoEncoder approach performed well comparatively to

the reference mocaps, regardless of the type of character controller being used. The Direct generation

method didn’t perform as well, however. When applied to a Kinematic character, participants tended

to believe most clips aside from “Afraid” and “Sad” were “Neutral”. The same happened when using

a policy controlled character, although with slight improvements to the “Tired” emotion’s performance.

This seems to indicate that the motions generated using this methodology are too generic and lack the

expressivity of the AutoEncoder approach, causing users to believe that the character is in a “Neutral”

style.

6.2.2 Primed Emotion Agreement Task

Certain emotions have intrinsic ambiguity when lacking context [47], which might have influenced the

answers given in the first test, explaining some of the obtained results. “Tired” and “Sad”, for example,

are both very low energy emotions and the way they get conveyed is somewhat similar, especially in the

reference mocaps. As such, when presented with just the clip with no further context or information about

what the character’s intentions are, it becomes easy for users to mix these emotions. To counteract this,

a second test was conducted where participants were explicitly told which emotion the character was

trying to express. They were then asked to rate how much they agreed that the character was in fact

expressing said emotion. Participants could answer using a Likert scale from 1 (Completely Disagree)

to 5 (Completely Agree). The overall goal of this test was to infer how accurately each clip managed

to convey their intended emotion, as perceived by the participants. As such, clips perform the better

the more participants agree that the presented emotion accurately matches the one showcased by the

character in its motion.

72

(a) Baseline Mocap performance.

(b) Direct approach on a Kinematic Controller per-
formance.

(c) Direct approach on a Policy Controller perfor-
mance.

(d) AutoEncoder approach on a Kinematic Con-
troller performance.

(e) AutoEncoder approach on a Policy Controller
performance.

Figure 6.3: Clustered bar charts showing the count of answers compared to the correct emotion for each of our set
of clips.

73

An initial Friedman test [56] was performed on the retrieved data in order to determine if there was

any statistically significant difference between the answers given for the same emotion using different clip

types - reference or generated animation, kinematic or policy-based character, AutoEncoder or Direct

generation. The analysis conducted over each emotion showed that there were statistically significant

differences between the responses given for each clip type for all emotions except for “Afraid” (p = 0.493).

This means that participants provided similar answers for the “Afraid” emotion, regardless of whether the

viewed clip presented the reference mocap, or had been generated using our system applied to either

a Kinematic or Policy-based character. Every other emotion, however, reported, to a varying extent, a

statistically significant difference amongst clip types. The full list of results is presented in Table 6.2.

Table 6.2: Reported Friedman Test Significance Levels per emotion.

Emotion Significance Level (Asymp. Sig.)
Happy <0.001
Afraid 0.493
Tired 0.002
Angry 0.003
Confident <0.001
Sad <0.001

A post hoc analysis using a Wilcoxon Signed Rank Test [66] was conducted over every emotion with

a significance level under p = 0.005 on the Friedman test - “Happy”, “Tired”, “Angry”, “Confident”, “Sad”.

This was done to directly compare each clip type pair in order to more granularly identify the presence

of statistically significant differences between clip type pairs. The results of this test can be found in

Appendix B. The “Sad” emotion was the only one for which there was a significant difference between

every generated motion type and the mocap (p < 0.001 for every generated-reference pair). For all other

emotions, most generated motions proved to have a statistically significant difference compared to the

reference, but there tended to be at least one generation method per emotion for which this didn’t hold

true. For example, on the “Tired” emotion there was a difference for all generated clips other than the

Direct approach applied to a Kinematic character (p = 0.472), and for “Confident” the same happened

but with the AutoEncoder approach applied to a Policy controlled character (p = 0.835).

After having determined the presence of statistically significant difference between the answers given

for each clip type, we then moved on to analyzing the provided responses. Knowing that there was a

difference between the answers given depending on clip type the goal was now to infer which type per-

formed the best in our test. To do so the dispersion of answers per type of clip for each emotion were

graphed into the boxplots shown in Figure 6.4. For the emotion “Happy” the baseline mocap outper-

formed all of our motion synthesis models, although they still reported decent results on all generation

method-controller type pairings other than Direct on a Policy controlled character. This, however, was

the only emotion where our generated motions didn’t perform as well or better than the reference mo-

74

cap. We can see that for the “Sad” and “Tired” emotions, both types of generation actually outperform

the reference mocap meaning that for these particular emotions, our generated motions are more easily

identified as their corresponding emotions. For the “Angry” emotion the results were similar regardless

of the clip being of a mocap or a generated motion. On the “Afraid” emotion we can see that the gen-

erated motions applied to the Policy-based characters performed slightly worse, but when applied to a

Kinematic characters they still presented results equitable to the reference mocap. For “Confident” our

AutoEncoder generated motions managed to perform slightly better than the reference but the Direct

approach generated ones didn’t, performing a bit worse, especially when applied to a Kinematic charac-

ter. Comparing our generation methods, the AutoEncoder approach seems to beat the Direct approach

in all instances although by how much the latter approach gets outperformed varies between emotions.

6.2.3 Discussion

Looking at the results of both tests, participants, for the most part, managed to correctly identify and

tended to agree with, the emotions that the generated motions were trying to convey. Moreover, cer-

tain emotions were more easily identified comparatively to the reference mocap. This showcases the

efficacy of our system, as it proves that we can achieve results with similar emotional expressiveness

to professional-grade mocap without the need and costs of recording several actors performing each of

the desired emotions.

In terms of character controller type, both Kinematic and Policy-based character controllers seemed

to present comparable performances. The obtained results didn’t seem to deviate much within gen-

eration method as there was never an instance where results drastically changed depending on the

character controller’s type. This seems to indicate that the EEMC system can be effectively used re-

gardless of controller type broadening its range of application to not only conventional mocap-based

kinematic animations but also automatically generated policy-controlled learned motions.

The AutoEncoder generation approach presented the best results out of the two implemented method-

ologies. Whilst the Direct approach still managed to achieve respectable results, it was always outper-

formed by the AutoEncoder generation and it seldom managed to beat the reference mocaps perfor-

mance, usually doing as good as, or just slightly worse than it. This, paired with the fact that the Au-

toEncoder approach takes less time to load, speeding up the system’s initialization time, has us believe

that this is the de facto better LMA Feature generation approach implemented, showcasing the efficacy

of the usage of an AutoEncoder to reduce the complexity of the PAD to LMA mapping problem.

75

(a) Performance for the emotion “Happy”. (b) Performance for the emotion “Sad”.

(c) Performance for the emotion “Angry”. (d) Performance for the emotion “Confident”.

(e) Performance for the emotion “Afraid”. (f) Performance for the emotion “Tired”.

Figure 6.4: Boxplot charts showing the value distribution for each of 6 of our tested emotions.

76

7
Conclusion

Contents

7.1 Conclusions . 79

7.2 Future Work . 80

77

78

To conclude this document this chapter summarizes what the proposed system aimed to do and

what it managed to accomplish in the end. We also provide some insight into possible improvements

that could be done to the system in the future.

7.1 Conclusions

We set out to tackle an issue plaguing current computer animation techniques - the fact that to make a

character display different emotions over the same baseline motion, an animator has to manually gen-

erate a new animation to add to a stack. Each emotion that the character should be able to convey

equates to an additional animation that needs to be created, even if the underlying motion is the same.

Furthermore, mocap of an actor performing the same exact movements in different emotional styles

has to be readily available to be used as reference. This issue is repetitive, time-consuming, costly

and prevalent regardless of whether animators are manually creating their animations or using an au-

tomatic motion learning system. To counteract this issue we created our Emotional Classification and

Emotionally Expressive Motion Control system for Locomotion animations.

The developed system is not only able to correctly identify the emotion that a character is attempting

to convey throughout its motion, but is also capable of tweaking the character’s movements in real time

in order to change its expressed emotion, specified through a set of PAD emotional coordinate values.

Motion synthesis can be performed multiple times with changes being applied to the character’s move-

ments almost instantly and without breaking the underlying motion. Through the usage of select LMA

features this system can accurately identify a character’s expressed emotion in the 3D PAD Emotional

space. Two distinct methodologies for generating sets of LMA Features with desired emotional values

were designed and implemented, with one of them simply mapping the coordinates into LMA features,

and the other using an AutoEncoder to reduce the mapping problem’s complexity. Using these gener-

ated LMA Feature values we can then alter a character’s motion in real time without the need for any

additional data or training. Furthermore, our system works not only on Kinematic controllers driven by

mocap, but also on physics-enabled characters controlled by learnt policies. The EEMC system was val-

idated through a set of user tests to infer the quality of its synthesized motions. Furthermore an article

describing the framework has been reviewed and was already accepted for publishing in an international

conference - the IEEE International Symposium on Multimedia.

Our system’s value lies in the fact that we can alter a motion’s emotion in real time without the need

for any further data or training. The system bypasses the need of having to record a mocap or train a

character controller policy for each emotion that the character is meant to express over the same motion

by managing to change the character’s emotion instantaneously while its still performing the baseline

movement. The fact that the system can be used interactively and that changes and predictions are

79

output in real time means that users can be used not only to create new animations that could then be

extracted and used just like conventionally generated ones, but could also be integrated with applications

that require modifications to be done during run time. For example, it would be possible to integrate our

system with a video-game where character’s need to alter their baseline motions in order to convey

different emotions to react to an ever-changing environment, evolving story, or decisions made by the

player on the spot. To showcase our emotional classification and expressive motion editing we also

designed an easy to use and interactable GUI that allows users to alter a baseline motion’s emotion by

specifying new desired PAD coordinates in real time and without the need for specific domain knowledge.

7.2 Future Work

In terms of future work there are several possible avenues that could be followed to improve our system.

Firstly the dataset we used grouped animations into preset styles rather than emotional coordinates. As

such, all animations that aimed to express the same emotion were labeled with the exact same Pleasure,

Arousal and Dominance values. In reality not all animations with the same emotion express it with the

same intensity, and the emotional coordinate values are subject to change even during the course of the

same animation. It would be interesting to explore our approaches using an enriched dataset that further

split each animation’s labels into chunks, adding more granularity to the emotional expression of the

data. Increasing the overall animation and emotional variety, alongside tweaking our motion generation

heuristic rules further may also improve our system’s performance on non-locomotion animations. It

would also be worth exploring different avenues for LMA Feature generation. More specifically, we

believe that GANs [18] or VAEs [30] could have the baseline generative capabilities to accomplish the

feature generation task [46] and possibly outperform our own PAD to LMA mapping methodologies.

Whilst we did try to create such models, the results yielded were far from ideal, outputting worse results

than the proposed techniques. We believe this may have been due to lack of data, salienting the need

for more and more varied emotionally expressive mocap animation data. Finally, motions generated by

our system can be somewhat exacerbated. Whilst the usage of the PAD model was chosen to allow for

a granular definition of emotions, it would be interesting to see the inclusion of an additional “Intensity”

slider to provide even more control on how exaggerated the synthesized motion’s emotion is conveyed.

A possible way to make this work would be to take the baseline neutral pose and the generated one and

perform some form of interpolation between them to find a “middle-ground”. The intensity slider could

then be used as a form of weight given to the baseline pose over the generated one, changing how close

we want the final output to be to its more neutral stance, over the generated emotion’s.

80

Bibliography

[1] Shailen Agrawal, Shuo Shen, and Michiel van de Panne. Diverse motion variations for physics-

based character animation. In Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium

on Computer Animation, pages 37–44, 2013.

[2] Insaf Ajili, Malik Mallem, and Jean-Yves Didier. Human motions and emotions recognition inspired

by lma qualities. The Visual Computer, 35(10):1411–1426, 2019.

[3] Kenji Amaya, Armin Bruderlin, and Tom Calvert. Emotion from motion. In Graphics interface,

volume 96, pages 222–229. Toronto, Canada, 1996.

[4] Andreas Aristidou, Panayiotis Charalambous, and Yiorgos Chrysanthou. Emotion Analysis and

Classification: Understanding the Performers’ Emotions Using the LMA Entities. In Computer

Graphics Forum, volume 34, pages 262–276. Wiley, 4 2015.

[5] Andreas Aristidou and Yiorgos Chrysanthou. Motion indexing of different emotional states using

lma components. In SIGGRAPH Asia 2013 Technical Briefs, pages 1–4. Association for Computing

Machinery, 2013.

[6] Andreas Aristidou, Qiong Zeng, Efstathios Stavrakis, KangKang Yin, Daniel Cohen-Or, Yiorgos

Chrysanthou, and Baoquan Chen. Emotion control of unstructured dance movements. In Pro-

ceedings of the ACM SIGGRAPH/Eurographics symposium on computer animation, pages 1–10,

2017.

[7] Bandai Namco Research Inc. Bandai-Namco-Research-Motiondataset. https://github.com/

BandaiNamcoResearchInc/Bandai-\Namco-Research-Motiondataset, 2022.

[8] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of

machine learning research, 13(2), 2012.

[9] Christoph Bregler. Kinematic Motion Models, pages 437–440. Springer US, Boston, MA, 2014.

81

https://github.com/BandaiNamcoResearchInc/Bandai-\Namco-Research-Motiondataset
https://github.com/BandaiNamcoResearchInc/Bandai-\Namco-Research-Motiondataset

[10] Joost Broekens and Doug DeGroot. Scalable and flexible appraisal models for virtual agents. In

Proceedings of the International Conference on Computer Games, Artificial Intelligence, Design

and Education (CGAIDE), pages 208–215, 2004.

[11] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic

minority over-sampling technique. Journal of artificial intelligence research, 16:321–357, 2002.

[12] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of

the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages

785–794, 2016.

[13] Zhaomin Chen, Chai Kiat Yeo, Bu Sung Lee, and Chiew Tong Lau. Autoencoder-based network

anomaly detection. In 2018 Wireless telecommunications symposium (WTS), pages 1–5. IEEE,

2018.

[14] Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro Katto. Deep convolutional autoencoder-

based lossy image compression. In 2018 Picture Coding Symposium (PCS), pages 253–257. IEEE,

2018.

[15] François Chollet. Keras. https://github.com/fchollet/keras, 2015.

[16] Stelian Coros, Andrej Karpathy, Ben Jones, Lionel Reveret, and Michiel Van De Panne. Locomotion

skills for simulated quadrupeds. ACM Transactions on Graphics (TOG), 30(4):1–12, 2011.

[17] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games, robotics

and machine learning. http://pybullet.org, 2016.

[18] Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sengupta, and Anil A

Bharath. Generative adversarial networks: An overview. IEEE signal processing magazine,

35(1):53–65, 2018.

[19] Aditya Deshpande. Rotation using Euler Angles. https://adipandas.github.io/posts/2020/

02/euler-rotation/, 02 2020.

[20] Thomas G Dietterich et al. Ensemble learning. The handbook of brain theory and neural networks,

2(1):110–125, 2002.

[21] Entertainment Software Association. 2022 Essential Facts About the Video Game Industry. https:

//www.theesa.com/resource/2022-essential-facts-about-the-video-game-industry/, 6

2022.

[22] Jerome H Friedman. Stochastic gradient boosting. Computational statistics & data analysis,

38(4):367–378, 2002.

82

https://github.com/fchollet/keras
http://pybullet.org
https://adipandas.github.io/posts/2020/02/euler-rotation/
https://adipandas.github.io/posts/2020/02/euler-rotation/
https://www.theesa.com/resource/2022-essential-facts-about-the-video-game-industry/
https://www.theesa.com/resource/2022-essential-facts-about-the-video-game-industry/

[23] Ed Groff. Laban movement analysis: Charting the ineffable domain of human movement. Journal

of Physical Education, Recreation & Dance, 66(2):27–30, 1995.

[24] Muhammad Arslan Hashmi, Qaiser Riaz, Muhammad Zeeshan, Muhammad Shahzad, and

Muhammad Moazam Fraz. Motion reveal emotions: identifying emotions from human walk using

chest mounted smartphone. IEEE Sensors Journal, 20(22):13511–13522, 2020.

[25] Holger Hoffmann, Andreas Scheck, Timo Schuster, Steffen Walter, Kerstin Limbrecht, Harald C.

Traue, and Henrik Kessler. Mapping discrete emotions into the dimensional space: An empirical

approach. 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pages

3316–3320, 2012.

[26] Daniel Holden, Jun Saito, and Taku Komura. A deep learning framework for character motion

synthesis and editing. ACM Transactions on Graphics (TOG), 35(4):1–11, 2016.

[27] IBM Corp. IBM SPSS Statistics for Windows. https://www.ibm.com/spss, 2021.

[28] Carroll E Izard. Basic emotions, relations among emotions, and emotion-cognition relations. Psy-

chological Review, 99(3):561–565, 1992.

[29] Ioannis A Kakadiaris. Physics-based modeling, analysis and animation. Technical Reports (CIS),

page 274, 1993.

[30] Diederik P Kingma, Max Welling, et al. An introduction to variational autoencoders. Foundations

and Trends in Machine Learning, 12(4):307–392, 2019.

[31] Midori Kitagawa and Brian Windsor. MoCap for artists: workflow and techniques for motion capture.

Routledge, 2020.

[32] John Lasseter. Principles of traditional animation applied to 3d computer animation. In Proceedings

of the 14th annual conference on Computer graphics and interactive techniques, pages 35–44,

1987.

[33] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,

2015.

[34] Yoonsang Lee, Sungeun Kim, and Jehee Lee. Data-driven biped control. In ACM SIGGRAPH 2010

papers, volume 29, pages 1–8. Association for Computing Machinery (ACM), 7 2010.

[35] Yuxi Li. Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274, 2017.

[36] Bart Moyaers Logan King. Bvhtodeepmimic. https://github.com/BartMoyaers/

BvhToDeepMimic, 2019.

83

https://www.ibm.com/spss
https://github.com/BartMoyaers/BvhToDeepMimic
https://github.com/BartMoyaers/BvhToDeepMimic

[37] Kin Gwn Lore, Adedotun Akintayo, and Soumik Sarkar. Llnet: A deep autoencoder approach to

natural low-light image enhancement. Pattern Recognition, 61:650–662, 2017.

[38] Fredrik Lundh. An introduction to tkinter. URL: www. pythonware. com/library/tkinter/introduction/in-

dex. htm, 1999.

[39] Li-Ke Ma, Zeshi Yang, Xin Tong, Baining Guo, and KangKang Yin. Learning and Exploring Motor

Skills with Spacetime Bounds. In Computer Graphics Forum, volume 40, pages 251–263. Wiley, 5

2021.

[40] Albert Mehrabian. Pleasure-arousal-dominance: A general framework for describing and measur-

ing individual differences in temperament. Current Psychology, 14(4):261–292, 1996.

[41] Chris Nicholson. A beginner’s guide to deep reinforcement learning. https://wiki.pathmind.

com/deep-reinforcement-learning, 2020.

[42] Daniel W Otter, Julian R Medina, and Jugal K Kalita. A survey of the usages of deep learning

for natural language processing. IEEE transactions on neural networks and learning systems,

32(2):604–624, 2020.

[43] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. Deepmimic: Example-

guided deep reinforcement learning of physics-based character skills. ACM Transactions on Graph-

ics (TOG), 37(4):1–14, 2018.

[44] Michael JD Powell. An efficient method for finding the minimum of a function of several variables

without calculating derivatives. The computer journal, 7(2):155–162, 1964.

[45] J Ross Quinlan et al. Bagging, boosting, and c4. 5. In Aaai/Iaai, vol. 1, pages 725–730, 1996.

[46] Tanmay Randhavane, Uttaran Bhattacharya, Kyra Kapsaskis, Kurt Gray, Aniket Bera, and Dinesh

Manocha. Identifying emotions from walking using affective and deep features. arXiv preprint

arXiv:1906.11884, 2019.

[47] RM Reynolds, E Novotny, J Lee, D Roth, and G Bente. Ambiguous bodies: The role of displayed

arousal in emotion [mis] perception. Journal of Nonverbal Behavior, 43(4):529–548, 2019.

[48] Kamrad Khoshhal Roudposhti, Luı́s Santos, Hadi Aliakbarpour, and Jorge Dias. Parameterizing

interpersonal behaviour with laban movement analysis—a bayesian approach. In 2012 IEEE Com-

puter Society Conference on Computer Vision and Pattern Recognition Workshops, pages 7–13.

IEEE, 2012.

[49] James A Russell. A circumplex model of affect. Journal of personality and social psychology,

39(6):1161, 1980.

84

https://wiki.pathmind.com/deep-reinforcement-learning
https://wiki.pathmind.com/deep-reinforcement-learning

[50] Alla Safonova and Jessica K Hodgins. Construction and optimal search of interpolated motion

graphs. In ACM SIGGRAPH 2007 papers. ACM Press, 2007.

[51] Sabrina Schneider, Andrea Christensen, Florian B Häußinger, Andreas J Fallgatter, Martin A Giese,

and Ann-Christine Ehlis. Show me how you walk and i tell you how you feel—a functional near-

infrared spectroscopy study on emotion perception based on human gait. Neuroimage, 85:380–

390, 2014.

[52] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region

policy optimization. In International conference on machine learning, pages 1889–1897. PMLR,

2015.

[53] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy

optimization algorithms. CoRR, abs/1707.06347, 2017.

[54] Murali Shanker, Michael Y Hu, and Ming S Hung. Effect of data standardization on neural network

training. Omega, 24(4):385–397, 1996.

[55] Shubham Sharma, Shubhankar Verma, Mohit Kumar, and Lavanya Sharma. Use of motion capture

in 3d animation: motion capture systems, challenges, and recent trends. In 2019 international

conference on machine learning, big data, cloud and parallel computing (comitcon), pages 289–

294. IEEE, 2019.

[56] Michael R Sheldon, Michael J Fillyaw, and W Douglas Thompson. The use and interpretation of the

friedman test in the analysis of ordinal-scale data in repeated measures designs. Physiotherapy

Research International, 1(4):221–228, 1996.

[57] Ronald E Shiffler. Maximum z scores and outliers. The American Statistician, 42(1):79–80, 1988.

[58] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

[59] Dean Takahashi. SuperData: Games grew 12% to $139.9 billion in 2020 amid pandemic, 1 2021.

[60] Silvan S Tomkins. Affect theory. Approaches to emotion, 163(163-195):31–65, 1984.

[61] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Courna-

peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der

Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric

Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,

Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,

Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Con-

tributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods,

17:261–272, 2020.

85

[62] Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, and Eftychios Protopapadakis.

Deep learning for computer vision: A brief review. Computational intelligence and neuroscience,

2018, 2018.

[63] Wei Wang, Yan Huang, Yizhou Wang, and Liang Wang. Generalized autoencoder: A neural net-

work framework for dimensionality reduction. In Proceedings of the IEEE conference on computer

vision and pattern recognition workshops, pages 490–497, 2014.

[64] Yasi Wang, Hongxun Yao, and Sicheng Zhao. Auto-encoder based dimensionality reduction. Neu-

rocomputing, 184:232–242, 2016.

[65] Marco A Wiering and Martijn Van Otterlo. Reinforcement learning. Adaptation, learning, and opti-

mization, 12(3):729, 2012.

[66] Robert F Woolson. Wilcoxon signed-rank test. Wiley encyclopedia of clinical trials, pages 1–3,

2007.

[67] KangKang Yin, Kevin Loken, and Michiel Van de Panne. Simbicon: Simple biped locomotion con-

trol. ACM Transactions on Graphics (TOG), 26(3):105–es, 2007.

[68] Zerrin Yumak, Maher Ben Moussa, Parag Chaudhuri, and Nadia Thalmann. Making them remem-

ber—emotional virtual characters with memory. IEEE computer graphics and applications, 29:20–9,

05 2009.

[69] Chong Zhou and Randy C Paffenroth. Anomaly detection with robust deep autoencoders. In

Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data

mining, pages 665–674, 2017.

86

A
Project Code & Useful Links

Table A.1 contains all links pertaining to our project, including the code-basis, article and website.

Table A.1: Project links.

Name Link Last Access Date

Code
(GitHub) https://github.com/HerouFenix/Emotionally-Expressive-Motion-Controller-for-Virtual-Characters 24/10/2022

Website https://heroufenix.github.io/expressive_animations_web/ 24/10/2022

Paper https://heroufenix.github.io/expressive_animations_web/ISM_2022_Emotionally_Expressive_Controller_FINAL.pdf 24/10/2022

Video
(Youtube) https://youtu.be/QOfVkoZa5HM 24/10/2022

User Test
Video Clips
(Youtube)

https://youtube.com/playlist?list=PLBchdrsdyMe_y7oUAzumcPc3P5ft3SMi4 24/10/2022

User Test
Reports
(Download)

https://heroufenix.github.io/expressive_animations_web/results.zip 24/10/2022

Devlogs
(Download) https://heroufenix.github.io/expressive_animations_web/Devlogs.zip 28/10/2022

87

https://github.com/HerouFenix/Emotionally-Expressive-Motion-Controller-for-Virtual-Characters
https://heroufenix.github.io/expressive_animations_web/
https://heroufenix.github.io/expressive_animations_web/ISM_2022_Emotionally_Expressive_Controller_FINAL.pdf
https://youtu.be/QOfVkoZa5HM
https://youtube.com/playlist?list=PLBchdrsdyMe_y7oUAzumcPc3P5ft3SMi4
https://heroufenix.github.io/expressive_animations_web/results.zip
https://heroufenix.github.io/expressive_animations_web/Devlogs.zip

88

B
User Test Reports

Following are several results from the tests done over the User Test Tasks described in Chapter 6.

These tests and graphs were obtained using the IBM SPSS [27] tool. Figures B.1, B.2, B.3, B.4, B.5 and

B.6 pertain to the “Emotional Identification” task and showcase the answers given by our participants for

each type of clip - reference mocap, Direct generated on a Kinematic Character, AutoEncoder generated

on a Kinematic Character, Direct Generated on a Policy-controlled Character and AutoEncoder Gener-

ated on a Policy-controlled character - for each tested emotion - Happy, Afraid, Tired, Angry, Confident

and Sad. Figure B.7 shows the results of Friedman Tests done to ascertain whether there were any

statistically significant differences between the answers given by participants for the different types of

clips for the same emotion on the “Emotional Accuracy” test. Figures B.8, B.9, B.10, B.11 and B.12 are

related to the “Primed Emotional Agreement” task and present the results of a Wilcoxon Signed Rank

Test done to infer if there was any statistically significant difference between each of of our generated

motions and the mocap, each motion generation type for Kinematic or Policy-controlled characters and

between Kinematic and Policy-controlled characters using the same motion generation. While the Fried-

man Test gives us an overview of the whole set of answers, using this test we are able to determine if

there is any statistically significant difference between each clip type pair.

89

(a) Baseline Mocap performance.

(b) Direct approach on a Kinematic Controller per-
formance.

(c) AutoEncoder approach on a Kinematic Con-
troller performance.

(d) Direct approach on a Policy Controller perfor-
mance.

(e) AutoEncoder approach on a Policy Controller
performance.

Figure B.1: Bar charts showcasing the count of answers given by test participants per video clip type for the emotion
“Happy”.

90

(a) Baseline Mocap performance.

(b) Direct approach on a Kinematic Controller per-
formance.

(c) AutoEncoder approach on a Kinematic Con-
troller performance.

(d) Direct approach on a Policy Controller perfor-
mance.

(e) AutoEncoder approach on a Policy Controller
performance.

Figure B.2: Bar charts showcasing the count of answers given by test participants per video clip type for the emotion
“Afraid”.

91

(a) Baseline Mocap performance.

(b) Direct approach on a Kinematic Controller per-
formance.

(c) AutoEncoder approach on a Kinematic Con-
troller performance.

(d) Direct approach on a Policy Controller perfor-
mance.

(e) AutoEncoder approach on a Policy Controller
performance.

Figure B.3: Bar charts showcasing the count of answers given by test participants per video clip type for the emotion
“Tired”.

92

(a) Baseline Mocap performance.

(b) Direct approach on a Kinematic Controller per-
formance.

(c) AutoEncoder approach on a Kinematic Con-
troller performance.

(d) Direct approach on a Policy Controller perfor-
mance.

(e) AutoEncoder approach on a Policy Controller
performance.

Figure B.4: Bar charts showcasing the count of answers given by test participants per video clip type for the emotion
“Angry”.

93

(a) Baseline Mocap performance.

(b) Direct approach on a Kinematic Controller per-
formance.

(c) AutoEncoder approach on a Kinematic Con-
troller performance.

(d) Direct approach on a Policy Controller perfor-
mance.

(e) AutoEncoder approach on a Policy Controller
performance.

Figure B.5: Bar charts showcasing the count of answers given by test participants per video clip type for the emotion
“Confident”.

94

(a) Baseline Mocap performance.

(b) Direct approach on a Kinematic Controller per-
formance.

(c) AutoEncoder approach on a Kinematic Con-
troller performance.

(d) Direct approach on a Policy Controller perfor-
mance.

(e) AutoEncoder approach on a Policy Controller
performance.

Figure B.6: Bar charts showcasing the count of answers given by test participants per video clip type for the emotion
“Sad”.

95

(a) Friedman Test results for
the emotion “Happy”.

(b) Friedman Test results for
the emotion “Afraid”.

(c) Friedman Test results for
the emotion “Tired”.

(d) Friedman Test results for
the emotion “Angry”.

(e) Friedman Test results for
the emotion “Confident”.

(f) Friedman Test results for the
emotion “Sad”.

Figure B.7: Results of a Friedman Test done to compare each of our video clip types for each emotion.

96

Figure B.8: Results of a Wilcoxon Signed Rank Test done to compare each of our video clip types for the emotion
“Happy”.

Figure B.9: Results of a Wilcoxon Signed Rank Test done to compare each of our video clip types for the emotion
“Tired”.

97

Figure B.10: Results of a Wilcoxon Signed Rank Test done to compare each of our video clip types for the emotion
“Angry”.

Figure B.11: Results of a Wilcoxon Signed Rank Test done to compare each of our video clip types for the emotion
“Confident”.

98

Figure B.12: Results of a Wilcoxon Signed Rank Test done to compare each of our video clip types for the emotion
“Sad”.

99

100

101

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Listings
	Acronyms

	1 Introduction
	1.1 Motivation
	1.2 Problem
	1.3 Contributions
	1.4 Document Outline

	2 Background
	2.1 Deep Reinforcement Learning
	2.2 Autoencoders
	2.3 Gradient Tree Boosting
	2.4 Animation Generation
	2.4.1 Kinematic Models
	2.4.2 Physics-Based Models

	2.5 Laban Movement Analysis
	2.6 Pleasure, Arousal, Dominance Emotional State Model

	3 Related Work
	3.1 Deepmimic
	3.2 Spacetime Bounds
	3.3 Emotion Control of Unstructured Dance Movements

	4 Emotionally Expressive Motion Controller
	4.1 Architecture
	4.2 Emotional Classification
	4.2.1 LMA Feature Extraction
	4.2.2 Emotion Classifier

	4.3 Emotionally Expressive Motion Synthesis
	4.3.1 PAD to LMA Mapper
	4.3.2 Motion Synthesizer
	4.3.3 Inverse Kinematics Solver

	4.4 System Showcase Modules
	4.4.1 Motion Learning
	4.4.2 User Interface

	5 Implementation
	5.1 Dataset
	5.2 LMA Feature Extraction
	5.3 LMA to PAD Mapping
	5.4 PAD to LMA Mapping
	5.4.1 Direct LMA Feature Generation
	5.4.2 AutoEncoder LMA Feature Generation

	5.5 Motion Synthesis
	5.6 Inverse Kinematics Solver
	5.7 Support Modules
	5.7.1 BVH To Deepmimic Converter
	5.7.2 User Interface
	5.7.3 Motion Learning

	6 Results & Analysis
	6.1 Final System
	6.2 User Testing & Validation
	6.2.1 Emotion Identification Task
	6.2.2 Primed Emotion Agreement Task
	6.2.3 Discussion

	7 Conclusion
	7.1 Conclusions
	7.2 Future Work
	Bibliography

	Bibliography
	Appendix A

	A Project Code & Useful Links
	Appendix B

	B User Test Reports

