
IAJ Project 2 - Pathfinding
This report has been made in accordance to the guidelines provided for the IAJ's (Inteligência
Artificial para Jogos) second project.

Authors

Diogo Silva (98776)

Index

A*

A* Algorithm

Euclidean Heuristic

Tie Breaking

NodeArray A*

Node Array and Map Preprocessing

NodeArray A* Algorithm

JPS+

Map Preprocessing

JPS+ Algorithm

Settings

Comparison and Analysis

PathFollowing

Car Spawning

Arrive Movement

StraightLine Smoothing

Behaviour Optimizations

A*

A* Algorithm

IAJ Project 2 - Pathfinding https://md2pdf.netlify.app/

1 of 11 04/01/2023, 17:08

Starting off with the base A* algorithm, we basically implemented it using as basis the code given
by the professor for Lab 3. As such several support methods were already implemented.

We did, however, alter the GetNeighbourList method both to simplify, and attempt to improve its
effieciency. Originally this method presented a plethora of if conditions and convoluted code that,
despite working, could also be achieved with a single nested and a couple inline conditions:

int startX = currentNode.x == 0 ? 0 : -1;
int endX = currentNode.x == grid.getWidth() ? 0 : 1;
int startY = currentNode.y == 0 ? 0 : -1;
int endY = currentNode.y == grid.getHeight() ? 0 : 1;
for (int xx = startX; xx <= endX; xx++){

for(int yy = startY; yy <= endY; yy++){
if(xx == 0 && yy == 0){

continue; // Dont add yourself as a neighbour
 }
 neighbourList.Add(GetNode(currentNode.x+xx, currentNode.y+yy));
 }
}

As for the Search itself, it was implemented basically as presented in the theoretical slides, with the
inclusion of the option to retrieve the partial path, and the processing of 15 nodes per frame. Other
additions include the computation of debug and analysis values such as the max open list size.

For the closed list we utilized the ClosedDictionary, as specified in Lab 4, and for the open list we
utilized the (rather unoptimal) SimpleUnorderedList, as it wasn't requested in any lab or guideline
that we utilized any other more appropriate data structure (like a PriorityHeap). This could,
however, be easily changed as the PriorityHeap is implemented and ready to be swapped into A* if
needed.

Euclidean Heuristic

Initially we implemented the Euclidean Heuristic by simply computing the Euclidean Distance as
such:

float x = (goalNode.x - node.x);
float y = (goalNode.y - node.y);

return Mathf.Sqrt(x * x + y * y);

This made it so the heuristic was admissable, since it would always output a value smaller than the
actual cost of going from node to goalNode. There was a problem however. The given x and y
coordinates passed to this heuristic were the coordinates post quantization (i.e, they're integer
values ranging from 0 to width or height). This is valid, and again, makes the heuristic admissable,
but it doesn't make it all too optimal due to the fact that for our pathfinding algorithms we

IAJ Project 2 - Pathfinding https://md2pdf.netlify.app/

2 of 11 04/01/2023, 17:08

normalize the costs of both straight and diagonal movements to a static 10 for straight jumps and
14 for diagonals (which is helpful since our grid cells have a varying size depending on how big of
a map we're using).

To improve this heuristic we altered it by multiplying the linear distance between the x and y
coordinates by the cost of moving in a straight direction, as such:

float x = (goalNode.x - node.x) * MOVE_STRAIGHT_COST;
float y = (goalNode.y - node.y) * MOVE_STRAIGHT_COST;

return Mathf.RoundToInt(Mathf.Sqrt(x * x + y * y));

This will output an Euclidian Heuristic that is "up to scale" with our defined cost values.
Furthermore it is still admissable since it will always be smaller or equal to the actual cost of going
from node to goalNode, and more optimal than the prior algorithm since the values are going to
be more inline with the actual costs of reaching goalNode from node (with the movement costs
being as defined). Note also that we do a RoundToInt before returning due to the fact that our
defined diagonal cost movement is an integer number (14). As such, if we used the non-rounded
value our heuristic would be over-estimating by a few decimals the actual cost, hence making it
non-admissable.

From left to right, the fill using ZeroHeuristic, Euclidean Heuristic without the "cost scaling",
Euclidean Heuristic with "cost scaling".

Tie Breaking

Our final improvement to the base A* was making it so, in occasion that two nodes produce the
same fValue, we pick the one with the lowest hValue (i.e, the one that is, according to our heuristic,
closer to the goal node). We did this, simply by adding a new method to our open data structures
(more specifically, in the case of A*, to our SimpleUnorderedNodeList). Initially we had already been
provided with a PeekBest method that used a LINQ query to get the node with the lowest fValue.

What we did was create a new method PeekBestTieBreaking, that gets the node with the lowest
fValue, and in case of tie, gets the node with the lowest fValue AND lowest hValue instead. This was
accomplished by adding some more conditions to the LINQ query, as such:

NodeRecord best = this.NodeRecords.Aggregate((nodeRecord1, nodeRecord2) => (nodeRecord1.fCost < nodeRecord2.fC

IAJ Project 2 - Pathfinding https://md2pdf.netlify.app/

3 of 11 04/01/2023, 17:08

NodeArray A*

Node Array and Map Preprocessing

Before implementing the NodeArray A* we had to first implement the NodeRecordArray data
structure itself. The class "skeleton" had already been provided to us for Lab 4, but we still had to
implement all of the actual methods.

Firstly we started by adding a new variable to our NodeRecord class - NodeIndex - aswell as a
static variable - next_index - which is initialized at 0 and increments every time a new node is
created (meaning each node's index is automatically attributed upon creation).

The actual instantiation of the NodeRecordArray is handled by the NodeArrayAStarPathfinding
class which posesses a method - MapPreprocessing - used to register and add all nodes to its
NodeRecordArray

List<NodeRecord> nodes = new List<NodeRecord>();
for (int x = 0; x < grid.getWidth(); x++)
 for (int y = 0; y < grid.getHeight(); y++)
 {

//Add records to list
 NodeRecord node = GetNode(x, y);
 nodes.Add(node);
 }
this.NodeRecords = new NodeRecordArray(nodes);

NodeArray A* Algorithm

The NodeArray A* Algorithm was implemented with efficiency in mind, both in terms of avoiding
unecessary searches and processing, but also in terms of memory - since all of our nodes have
already been created and are stored in our NodeRecordArray, creating additional nodes would be
a waste.

This class was implemented as a subclass of the AStarPathfinding class, which served as a super
class for both this and for our JPSPathfinding.

The most notable difference between the NodeArrayAStarPathfinding and it's super class lies in
the ProcessChildNode method. More specifically, in the fact that instead of iterating through our
open and closed lists to check if the current neighbour node we're checking is in any of these, we
simply get the node from our NodeRecordArray and check it's status (which is either set to Open,
Closed or Unvisited).

var node = this.NodeRecords.GetNodeRecord(neighbourNode);
if (node.status == NodeStatus.Open){

IAJ Project 2 - Pathfinding https://md2pdf.netlify.app/

4 of 11 04/01/2023, 17:08

 // Child is in open
 if (node.fCost > fCost){
 (...)
 }
 return;
}else if (node.status == NodeStatus.Closed){
 // Child is in closed
 if (node.fCost > fCost){
 (...)
 }
 return;
}

It should also be noted that inherently this algorithm also does a type of tie breaking, in the sense
that the Open list, implemented using a Priority Heap, adds nodes to the list, firstly ranked by fCost
and then by hCost in the case of ties. This happens because the CompareTo function in the
NodeRecord class was altered to have this in mind.

JPS+

Map Preprocessing

JPS+ gets most of its efficiency during runtime from all of the preprocessing that has to be done to
the map. More specifically, we need to generate the primary jump points, and compute the
distances from each node to each jump point through sweeps.

Before this, however, we had to add two new variables to our NodeRecords - directions and
distances.

The first is a boolean array with size 4 in which each index corresponds to the cardinal directions
North, South, East, West (in this order). The index is set to True if this node is a primary jump point
entering from the given direction. For example, in the image below, that specified Jump Point node
would have it's directions array set to [True, True, False, True].

The latter, distances, is a String-Int Dictionary that maps each possible direction (North, South,
East, West, NorthEast, SouthEast, NorthWest, SouthWest) to an integer value corresponding to
node's distance to a jump point (or wall). Note that this could have also been implemented with
just an integer array rather than a dictionary, but for the sake of prerving our sanities when

IAJ Project 2 - Pathfinding https://md2pdf.netlify.app/

5 of 11 04/01/2023, 17:08

debugging and implementing the JPS+ runtime algorithm, we chose to have it be a dictionary
instead (and would've done the same for the directions variable aswel, if not for hubris).

The directions variable (i.e, marking nodes as jump points) is done on the checkJumpPoint method,
meanwhile the distances are set on our sweepLeftRight (sweeps left to right and right to left),
sweepUpDown (sweeps down to up and up to down), sweepUpDiagonally (sweeps down to up right
and left) and sweepDownDiagonally (sweeps up to down right and left). All of these methods are
called in the JPSPlusPathfinding class method MapPreprocessing.

All of these algorithms were basically implemented as specified in the GameAIPro2 book.

It should also be stated that our JPS+ implementation was done using the NodeRecordArray for
both the Open and Closed sets.

JPS+ Algorithm

After doing all the preprocessing, the JPS+ algorithm was implemented as specified in the
GameAIPro2 book (with adaptations so that it would work with the NodeRecordArray and our
other classe's structures). Several support functions had to be created such as inGeneralDirection
and inExactDirection and so on. It should also be stated that, for Open and Closed lists we used our
NodeRecordArray and, just like the NodeRecordArrayAStarPathfinding class, the
JPSPlusPathfinding class also inherits from AStarPathfinding.

For our algorithm to work properly we had to add yet another variable to our node records -
travelingDirection. Since JPS+ introduces the notion of removing redundant paths by considering
which directions to move on depending on the direction the node was entered. As such, this
variable holds the direction that the current node's parent was traveling to reach the current node
(the exception to this is the starting node which has no traveling direction, since it has no nodes
that traveled to it).

The travelingDirection variable is also important for our CalculatePath method which had to be
altered for this class (I'd also like to remember that this class is in fact a subclass of
AStarPathfinding). A property of JPS+ is that it only considers Jump Point Nodes (or Target Jump
Points), and as such, when the algorithm finds the path, it will have just the disconnected nodes, as
seen in the left image. With the travelingDirection, however, we can post-process our path to
include all the intermediate nodes and achieve an output as specified in the image on the right.

Several other adaptations were made for the algorithm to work properly (such as using the
aformentioned DIAGONAL_JUMP_COST and STRAIGHT_JUMP_COST to compute the givenCost)
that are too extensive to include in this report.

IAJ Project 2 - Pathfinding https://md2pdf.netlify.app/

6 of 11 04/01/2023, 17:08

Settings

Before proceeding further, we should explain the available settings and variables of our
Pathfinding Manager

Partial Path
Check to make it so the partial path is returned

Use Euclidian
If checked the algorithms will use the Euclidean Heuristic. If its not, then they will be using
the Zero Heuristic

Search Algorithm
Used to select which pathfinding algorithm should be used.

Valid values are - A, NodeArrayA and JPS+.

Spawn Car
If checked, when the search algorithm finishes a car will be spawned and start following
the created path

Tie Breaking
If checked, A* will use Tie Breaking via heuristic value checking

Use Priority Movement
If checked, the car's movement will include priority movement and dynamic avoid
obsticles, else, it just uses Arrive Movement.

Comparison and Analysis

After all of our algorithms had been implemented and properly tested we proceeded to analyze
their behaviours and compare them against each other. Bellow follow two pictures. The first has
some results obtained from running Unity's Deep Profiler + Call Stack in order to analyze which
functions each algorithm's search function was calling and where the time was being allocated.
These results were obtained running the search algorithms for 100 nodes on each frame.

IAJ Project 2 - Pathfinding https://md2pdf.netlify.app/

7 of 11 04/01/2023, 17:08

Some conclusions could be taken, such as comparing the execution time of certain methods
between algorithms and realizing that some algorithms call methods that others do and vice versa
(for example the NodeArray A* algorithm doesn't bother generating child node records, since it
bases itself around not having to generate more nodes than the ones created during pre
processing). We find that this isn't the optimal way to compare our algorithms however, as we had
to randomly pick a frame from the profiler to analyze for each of the algorithms (aiming to never
pick neither the one that peaked or valleyed in terms of CPU usage).

Following are results obtained by running each algorithm (maximum 25 nodes per frame) on the
same paths and recording their debug values. More specifically we recorded the total number of
nodes explored, the fill (by subtracting the number of nodes explored minus the nodes that were
in the actual path), the maximum size of the open list, the total processing time until the search
was complete, and the minimum, maximum and average time it took to process a node. All these
paths were done on the provided giantGrid (100x70 nodes)

IAJ Project 2 - Pathfinding https://md2pdf.netlify.app/

8 of 11 04/01/2023, 17:08

As we can easily see, JPS+ absolutely demolishes all other algorithms in every front. It obtains
processing times that are much smaller comparatively (except for paths that consisted of 2-8
nodes, at which point we could confidently say that the difference in processing time is due to
margin of error). In terms of nodes explored, fill and max size of open list, no matter the path, JPS+
always obtained better results (i.e smaller ones).

This however, was to be expected. JPS+ is able to perform much faster at runtime due to all the
preprocessing it does on the map. Only jump points are explored and added to the open list,
unlike the other algorithms that indiscriminately allow for the exploration of any node
(conditionally, obviously). We don't even need to generate or compute neighbours since all we
need to do to check where we can go next is check the direction we entered the current node from
and its distances variable.

All other results obtained were, aswell, consistently expectable. A* was the node that performed
the worst out of all the search algorithms, which wasn't surprising, as this was served as a base
class for all other nodes and posessed no "tricks" like the JPS+ or "optimizations" like the
NodeArrayA*.

A with tie breaking* performed very similarly to A* in most occasions, but it did manage to shave
off a few nodes out of both fill, total nodes explored, and sometimes even max nodes in the open
list. In terms of time taken, however, there wasn't a large enough margin that would lead us to
conclude A* with tie breaking was significantly better than A*. At least not the way we
implemented it. It should be mentioned the way we did Tie Breaking was very simple. Perhaps

IAJ Project 2 - Pathfinding https://md2pdf.netlify.app/

9 of 11 04/01/2023, 17:08

another strategy such as slightly augmenting artificially the value of the hCost could produce
better results, but then again, it could also make our heuristic non-admissable.

NodeArrayA* managed to obtain the same fill, total nodes explored and max nodes in open list
values as A* with Tie Breaking. This was expected as, all in all, we're not really altering the way or
order we process nodes (remember NodeArrayA* also inherently does tie breaking due to the way
it stores the nodes in the PriorityHeap). What this algorithm does, however, is make it so we don't
have to constantly create new nodes and, perhaps more importantly, makes it so we don't have to
iterate over an open and closed list in order to verify whether a node is or is not in the open or
closed lists. The impact of this can even be seen in the first image where the ProcessChildNode
method was constantly recquiring less execution time than the ProcessChildNode methods in A*
and A* with Tie Breaking. This then leads to the execution times being consistently smaller in all
paths with a significant enough number of nodes (taking into account that the more nodes we
have to explore, the better NodeArrayA* will be over A* and A* with Tie Breaking, since it will cause
more nodes to be in the closed/open lists, hence leading the latter algorithms to have to iterate
over a much larger number of nodes.

All in all, no surprises were had.

As a side note, all of the created tables have also been exported to a csv file - P2_Tables.csv - thats
included in the project.

PathFollowing

Car Spawning

If the Spawn Car option is checked in the PathfindingManager then upon a search's completion
one out of four possible cars will be spawned in the node in which the search started. It will
immediately start following the computed path and upon reaching the goal node, stop. When
clearing the grid, or after a new path is computed, the car will de-spawn and a new one will be
generated. Our cars are controlled by our MovementController class which receives, not only the
spawn location, but also an array with the real-world coordinates of each node in the path (except
for the starting one, i.e, the one where the car should spawn and therefore, already is).

Movement

Our cars move using the Dynamic Arrive movement from the previous project.

One might easily realize that the Arrive movement won't really generate the most realistic of
movements. And one would be right. If we simply set the car's target to be the next node in the
path, what we'll witness is that the car accelerates briefly, and then immediately starts
deaccelerating, since in our grid all of our path's nodes are next to each other. The car will basically
be moving in "hiccups".

IAJ Project 2 - Pathfinding https://md2pdf.netlify.app/

10 of 11 04/01/2023, 17:08

Initially, we solved this by also including the Dynamic Seek movement and setting our cars to
move with this behaviour for each node except for the last one, at which point we swapped to
Arrive. This, however, caused a lot of crashes courtesy of paths that included sharp (or even non-
sharp...) turns. We then removed this movement and instead implemented Straight Line
Smoothing which ended up solving our "hiccups" problem. There were still, however, situations in
which after a sharp turn the car would skim against a wall, or pass over an obstacle.

It should also be stated that we added code into the Pathfinding Manager class in order to
generate a Box Collider around the "wall" nodes. This was done initially for the StraightLine
smoothing optimization, but also ended up being useful for the optional Priority Movement.

StraightLine Smoothing

The straight line smoothing was done as specified in the theoretical slides. We start at a node and
check each node after it and the one after that and see if we can move directly from our current
one to the farther, if so, we delete the middle one. We repeat this until we find a node we cannot
remove, at which point we set our current node to be that one, and continue the algorithm. The
way the deletion is done is by adding the nodes to be removed to a temporary array, and then
removing the nodes in that array from the nodes in the movement's path. We couldn't easily
remove the nodes directly from the path during the iterations of the algorithm since this could
lead to problems (as we'd be altering the array we're iterating over). It should also be stated that
we check whether or not we can move directly to a node by generating several intermediate points
between the current node and the node we're checking, and at each point checking for any
collisions using a central ray and two smaller whiskers.

This algorithm was implemented in our cullPath method, and managed to effectively remove the
unecessary nodes from our path.

Behaviour Optimizations

For tweaking the values (which were adjusted to work optimally with the Giant Grid), we also had
the idea to include a "dynamic" adjustment of the Arrive movement's slow radius that took into
consideration the position of the target we just arrived at to the next target. This was based on the
idea that, the farther the distance, the more we're going to be accelerating, henceforth, the faster
we should start slowing down. this.arriveMovement.SlowRadius = 6.5f + 0.015f *
totalDistance;

Besides this we also set the Arrive movements' stop radius to 0.0, since we don't actually want to
fully stop, just slowdown between targets. We do, however, set the stop radius to 0 when dealing
with our final target.

Other optimizations were attempted to avoid certain collisions, but in the end we ended up adding
the option to activate Priority Movement, which uses both the Arrive Movement and a Dynamic
Avoid Obstacle algorithm to attempt to avoid crashing into obstacles.

IAJ Project 2 - Pathfinding https://md2pdf.netlify.app/

11 of 11 04/01/2023, 17:08

