

6 Teste e Qualidade de Software

TQS: Quality Assurance manual
Diogo Silva [89348], Pedro Oliveira [89156], Pedro Escaleira [88821], Rafael Simões [88984]

v2020-05-143

Project management 1
Team and roles 1
Agile backlog management and work assignment 2

Code quality management 5
Guidelines for contributors (coding style) 5
Code quality metrics 6

Continuous delivery pipeline (CI/CD) 8
Development workflow 8
CI pipeline and tools 10
CD pipeline and tools 11
Pipeline Monitoring 12

Software testing 13
Overall strategy for testing 13
Functional testing/acceptance 13
Unit Tests 14
System and Integration Testing 15
Performance Testing 15
Production Analysis 16

1 Project management

1.1 Team and roles

The team is composed of highly capable developers, both in terms of Backend Development,
with shared experience in all technologies utilized, as well as in the usage of the JavaScript
frameworks for the Frontend development. We’re all used to the Git Workflow from previous
projects, i.e. working in separate branches for each feature that we were assigned and creating
merge requests before pushing code to the main branch.

As requested by our professor, we organized the team members in 4 roles. In the following
points, we can consult the division made:

● Team leader

6 Teste e Qualidade de Software

○ We decided by absolute majority that Diogo Silva would be the perfect one for this
position. His work is to decide which tasks to do next, by whom, and in what time. He
also makes meetings with all the project members to discuss new work approaches
and the efforts required in the following weekly sprint. Therefore, he also acts as the
project’s Scrum Master.

● Product owner

○ Our product owner is Pedro Oliveira: he will be the one to represent our clients’
wants and needs; he is responsible for knowing what requirements are most
important, and which should be done first; he will also be the one to present ideas
and further features that should be implemented in the project.

● DevOps master

○ Because of prior experience, we decided that Pedro Escaleira would be the best
person to fit this role. As such, he was responsible for the set-up of the repository, it«s
CI and CD pipelines, as well as deploying all of our service’s modules in the server.

● QA Engineer

○ Finally,, we attributed the role of QA engineer to Rafael Simões. He’ll be the one in
charge to check if the source code is according to the standards of our code style,
and check if the tests the rest of the team implemented for their respective feature are
thorough enough, warning us, as the developers, if we missed a use case that must
be tested.

● Developer

○ As requested by the subject professor requested, we are all project developers. In
this role, we created two subroles:

■ Frontend developer: Diogo Silva and Rafael Simões, which are responsible
for creating all the web and mobile applications.

■ Backend developer: Pedro Escaleira and Pedro Oliveira, responsible to
create the REST API which is supporting all the end user applications.

Our team’s channel for communication was with the Slack app, having introduced several
channels for different conversation topics, such as a deploy channel with a Bot connected to
GitHub to tell us about the deploy stages and an Issue channel with a Bot connected to the
Github Issues so that we are notified the moment an issue was assigned to us.

1.2 Agile backlog management and work assignment

Our development focused around a mix between the Scrum and Kanban strategies: where we
prepare a backlog of tasks that have to be done for the project, and divide them into To Do, In
Progress, and Done.

We have also adopted the use of Sprints: we start a meeting by each saying what has been
done in the past Sprint, and move on to explain what needs to be done in the following one.

6 Teste e Qualidade de Software

Each Sprint, in our strategy, will last one week, so that we all remain updated with the progress
of the project, be it the frontend or the backend, while also retaining a fairly large window to
work on the project and the assigned tasks.

In order to keep track of all this, we have been using Jira. Our team leader created tasks in the
project’s backlog, and assigned each one to a developer. He also divided all those tasks into
Epics, representative of the project’s milestones, wrapping several subtasks.. After being
assigned to a task, the person is in charge of creating child issues, since the main task may
prove to be too vague or too all-encompassing, not quite representing the work that needs to be
done in a simple task.

Img 1.1 - An image representative of our Jira Backlog

Img 1.2 - An image representative of one of our Sprints defined in Jira

6 Teste e Qualidade de Software

Img 1.3 - A cumulative graph representative of our backlog’s progress the day before delivery

We also associated each task with a score detailing its estimated difficulty. This score helps us
balance the workload between Sprints and between developers, since it would not be
particularly fair if one person had all the most important and most challenging tasks, while
others had simpler ones. We also added a label detailing if the task is referring to a Use Case,
meaning it’s part of a feature the client will interact with, or general IT support, implying the task
is a more technical one, it may be related to database maintenance, or CI/CD pipelines, but it’s
not directly related to our end-user.

Img 1.4 - A graph showcasing the speed of each of the sprints. It should be noted that we only started assigning points
to each task at the start of the second sprint, due to the teacher’s suggestion. It should also be noted that on Iteration 3

we managed to complete all of our assigned tasks and even go beyond. Iteration 4 shows the end of the project, the
reason the two bars aren’t leveled is due this screenshot having been taken the day before delivery, with some work

still needed to be done

6 Teste e Qualidade de Software

2 Code quality management

2.1 Guidelines for contributors (coding style)

As our main programming language for the backend was Java-based, we used the more
famous Google code, following the guide under the AOSP Java Code Style.

You should already expect some of these rulings from other languages, such as properly
treating Exceptions (catching specific exceptions and properly treating them, by returning an
error message or throwing another exception), properly naming Test functions (by making the
conditions and result explicit), avoiding generic imports and making sure that lines remain
under 100 characters.

https://source.android.com/setup/contribute/code-style

6 Teste e Qualidade de Software

Img 2.1 - Some examples of our code style

Others that are more specific to the project include the naming conventions we adopted for our
variables: any non-public, non-static field in a class must start with m, any static field must
begin with an s, and any constant must be written fully capitalized and with underscores.

Furthermore, if blocks with one instruction only must be written either inline with the condition,
or with brackets. A developer can’t have the block and the condition in different lines without
brackets surrounding the code.

2.2 Code quality metrics

Following efforts made in other prior projects, in which we used SonarCloud or SonarQube,
we decided to use the first one for this project. In the image below, we can behold the
dashboard of it for our project on the early stages, where we can consult the number of bugs,
code smells, security issues and others:

6 Teste e Qualidade de Software

Img 2.2 - Statistics that came from SonarQube

This tells us that our source code currently has near 300 unit tests, covering a total of 93.5% of
the Backend. It’s important to note, the pipeline isn’t accounting for the frontend code or the
functional tests that have been implemented.

We also have a pipeline in our repository that automatically searches for possible bugs in each
code push, using the Spotbugs tool. This would tell us if our code is completely bug-free, that
may lead to a future error that we were not expecting or accounting for in our tests.

6 Teste e Qualidade de Software

Img 2.3 - Bug found when running the pipeline

3 Continuous delivery pipeline (CI/CD)
3.1 Development workflow

In this project, we decided to use the GitHub workflow, as all of the members are used to working
with it from other projects. In summary, our process is as specified on the page GitHub Guidelines .
When each of us wants to work on a new feature, these steps are followed:

1. Create a new branch from master

a. For features the branch should follow the nomenclature: feature/<feature_name>

b. For hotfixes and bug corrections the branch should have the naming template:
hotfix/<feature_name>

c. Note that there may be variations of these templates such as
feature/frontend/<frontend_feature> for all frontend features, and backend features
which may be feature/api/<backend_feature>.

d. When we wanted to make a new deploy, the nomenclature of the branch was:
deploy/<branch_name>

2. Work on that branch

https://guides.github.com/introduction/flow/

6 Teste e Qualidade de Software

a. We start working on the features, introducing new functions, or correcting past bugs;
occasionally, we may also have to update our branches with the code in the main
branch.

b. A feature is considered done not just if the code for the feature is finished, but also if
it has the tests for what might go wrong or right when executing the feature.

3. Pull request and Code review

a. When we finish the given work on a branch, we finally request a review from one of
our colleagues, with the purpose to have a second person to verify if the new code is
well written and in accordance to the code style, doesn’t have any bugs, has the
proper tests for the feature, and it has passed all of them.

b. The strategy we use to select the person who will review our code is to pick the
person working on the corresponding frontend requests or the person that’s most
connected to the feature.

c. Lastly, if the reviewer thinks that the code can be merged to the main branch, he may
approve:

On the other hand, if the reviewer thinks the code shouldn’t be merged to the main
branch, for some possible problem, e.g. the code has conflicts with the master
branch, he requests the main author to fix the problems found.

When this happens, the author fixes the code as requested, after talking with the
reviewer for clarification, and, once again, the author asks a new review for the new
changes:

6 Teste e Qualidade de Software

4. Merge the branch code to master

a. When at last the author of the branch gets an approval on its pull request from every
reviewer, he will merge the new code to the master’s branch, deleting the pull request
branch in the process. This is done to avoid clutter and keep our git clean.

In terms of our team’s “definition of done” it basically boiled down to, when a person is done
with both implementing and properly testing a feature, creating the aforementioned pull request.
This request would then be reviewed by the appropriate members, who could request changes,
if anything wasn’t up to standards or a bug was found, or accept the branch if they thought
everything was ok. That feature would only be called as “done” after every single one of the
reviewers accepted it. With this we assured that only fully done features would be merged over
to our master branch, assuring that it contained the most stable and complete code possible.
This definition also allowed us to have a concrete set of subtasks that would have to be ticked
before a pull request could be opened giving us a method to better organize both ourselves and
our workflow.

3.2 CI pipeline and tools

As we used GitHub to host our repository’s code, we decided to use the new tool for
Continuous Integration: GitHub Actions. Although we could have used other, more powerful,
tools for this task, e.g. Jenkins, this is a relatively small project, and we just needed to have
tests and static code verification, so we decided it would be better to stick to a simpler, but
powerful tool.

In our project, we created 4 CI pipelines:

● SonarCloud Workflow: used to send new code to the SonarCloud project
associated with this repository.

● SpotBugs Workflow: as the name implies, this workflow was used to verify possible
bugs that our new code could have. Obviously, this task is already done by

6 Teste e Qualidade de Software

SonarCloud, but with this tool, we got right away the possible bugs existence on the
GitHub page, without the need to check the SonarCloud Dashboard.

● Tests Backend Workflow: created with the purpose to run all tests we created
during the project’s elaboration. This way, we had the confirmation that new code
doesn't break what’s already been done.

● Tests frontend Workflow: created to test the features to the frontend as this
develops, the same way we do to backend. This pipeline runs a development react
server and maven selenium tests associated with the web application.

● Tests mobile app Workflow: this simple workflow was used to run the npm tests for
the mobile application.

3.3 CD pipeline and tools

As for the CI pipeline, for the continuous delivery and continuous deployment we also used
GitHub Actions to create the web application and rest api docker images.

The pipeline created for this tasks was:

● Deliver Workflow: Triggered when we made a pull request with the tag deploy.
When a new push to a pull request with these properties is made, this pipeline
creates two docker images: api (made in Spring Boot and working on port 8080)
and web-app (made in React and served by a simple Nginx server on port 80).
These packages then where placed on the GitHub Packages repository page:

Img 3.1 - Our repository’s packages

Then, on the server side, we had a service deployed on docker called watchtower, which is
responsible for, every 5 minutes, to verify if there are new docker images on the repository
and, in that case, to remove the old containers and build new ones.

It is noteworthy that we used Portainer to manage more easily the deployed containers, as can
be seen on the image below.

6 Teste e Qualidade de Software

Img 3.2 - Our portainer

3.4 Pipeline Monitoring

Besides the actual pipeline we also implemented a pipeline monitoring tool. We coded a script
that tracks the stage of the CI/CD pipeline running on our master branch utilizing Python3 and
the Pygame library. We then left this program running on a Raspberry 3 computer
continuously, so that when a new commit pushed to our main branch (or any other branch we
wanted to track) the graphical display showcases information such as who made the push, the
merge name, as well as the state of all pipeline stages:

Img 3.3 - Example of the monitoring script for some commit. A video of this running program running can be found on
the project’s Google Drive

For this script we used a public python library, PyGithub, but we also had to add more
functionalities to it, due to the lack of control of GitHub Workflows. By default, the script is

https://drive.google.com/drive/folders/1L-cahcNo5ZVX6p64ijbs-W31lpjKoJRE?usp=sharing
https://github.com/PyGithub/PyGithub

6 Teste e Qualidade de Software

making a request every 5 seconds, asking for new updates on the workflow states for the last
commit for a given branch.

4 Software testing
4.1 Overall strategy for testing

When developing the source code for the Backend, we adopted a TDD approach, meaning we
would talk, in group, about what the function should do, what exceptions it should raise and on
what occasions, and what the return and final result should be.

After this, we would make the tests in accordance with the requirements established, unit tests
and Integration tests, before actually coding the feature in the backend. Only after these tests
are programmed, would we start the backend development, and implement the feature.

This was something we were already familiar with, as we had done the same type of approach
in our last project. Of course, the scale was much smaller and had less features, since it didn’t
require authentication or database interactions, but we still had some experience in using this
strategy.

As for our strategy for the frontend testing, due to the limitations of the technologies, we wrote
the tests after the development of the frontend. However, it must be noted that we also worked
with BDD in some of the features in the frontend, to experiment with this strategy as well.

The tests were developed using JUnit 5 as the base framework for out testing; Mockito to
simulate the interactions between classes that are dependent on one another; SpringBoot
MockMVC to simulate the user and his interactions with the REST API, for the integration
testing; Selenium to test the interaction with the Web app interface, Cucumber for the some
feature tests (and to experiment with BDD) and JEST and Enzyme to test the mobile app’s
code.

4.2 Functional testing/acceptance

When it came to testing our service from a functional standpoint we opted to utilize Selenium.
Each time a new page was added to the web app a corresponding test would be written for it,
with the feature/page only being considered done after these tests passed. It should be noted
that this is in fact not a TDD approach. We opted to write functional tests a posteriori due to the
way Selenium lends itself to utilization, being way more intuitive to utilize after the pages are
done, as well as due to the fact that due to the low time we had to complete the project we
couldn’t produce frontend mocks for every page, hence the design was constantly evolving
which would make writing the functional tests first complicated.

Before writing the tests themselves, we started off by creating the WebAppPageObject.java
class. This class follows the PageObject Pattern, encompassing all support methods for driver
control and page interaction. With this we were able to produce readable and clean tests,
alongside being able to reutilize a lot of interaction code easing the production of tests. We

6 Teste e Qualidade de Software

included drivers for Firefox and Chrome due to our team members preferring either or browser,
but these were posteriorly commented out in lue of a Headless Chrome Driver that allowed
these tests to run on our pipeline.

We also wanted to try out using a BDD methodology in this project, mostly for pedagogical
intents, and as such we decided to implement a couple of features following this practice. For
this we combined Cucumber with Selenium in order to produce feature tests that were actually
written before the actual page was produced. These were made for some of the auction-related
features in our web app and can be found amongst the other “regular” Selenium tests.

Lastly, it should be stated that at first we wanted to create tests for our mobile app using
Appium, which functions similarly to Selenium, hence allowing us to produce functional tests
also. However, the setup process was rather infernal, and especially when considering the time
we had and online suggestions, we opted to not include these tests (swapping them for Unit
tests as we’ll explain in the next section).

4.3 Unit Tests

Our Unit tests mainly revolve around the three different components in our system: our
Repository classes, our Service classes and our Controller Classes.

The unit tests revolving around the repository tests were to make sure that everything was
being saved properly in the database in-memory, and that the more complex queries were
working as we expected them to.

The Service unit tests are around the business logic between the interaction of the Controller
classes and the Repositories, receiving the expected objects from the controllers, and using
mocks around the repository. This would allow us to make sure that the appropriate methods
are being called, and the different results from the repositories will result in the right response
or throw the correct exception.

Finally, the Control unit testing is around making sure that the JSON objects are being mapped
correctly when a valid object in the request, and if they’re not valid, we are sending the correct
Error HTTP status, along with a descriptive reason for the failure. In this unit tests, we used the
MockMVC from the Spring Boot framework to simulate the request, and we mocked the
behaviour from the Service.

On the frontend side we implemented Unit tests on the mobile app utilizing a mixture of Jest
and Enzyme. With these tools we were able to mock the behaviour of our REST API and test
the code we utilize to fetch information and state updates. Each screen on the mobile app has a
corresponding test suite associated with it (sometimes even more than one) which tests all of
their methods extensively, either methods like page changing or interactions with our REST
such as searching or loading information. By proxy, we would also like to point out that, due to
code used to interact with the API being mostly the same between the Web and Mobile app, by
doing unit tests on the latter we are also inadvertently unit testing some of the web apps fetch
methods.

6 Teste e Qualidade de Software

Img 4.1 - Jest - A JS Unit Testing Tool

4.4 System and Integration Testing

API testing was similar to unit testing in the Controller. The tests themselves are practically the
same, differing only in the setup that’s connected to the test. Instead of simply using Mocks to
simulate the entities, we are using the already implemented entities, and save perfectly valid
objects as we would expect from a realistic scenario to set up the context for the return value of
the request.

To apply these tests, we have use some of the Springboot annotations:

● @AutoConfigureMockMvc to configure the MockMvc and simulate the client requests to
the API.

● @AutoConfigureTestDatabase to configure the in-memory H2 database, so that we don’t
have to use our actual database for the testing, as it would cause a lot of unnecessary
errors.

● @SpringBootTest to start the web context as if it was a regular execution of the REST API
● @DirtiesContext to reset the databases, and not have errors regarding the dependencies

between the foreign keys when clearing the databases.

4.5 Performance Testing

In order to test the performance of our REST API, we used the JMeter framework, and tested
the most important features: check all the games, check a game in particular, and check my
information as a user of the platform.

Endpoint Latency Total Elapsed Time

/grid/games/all?page=1 4242 4395

/grid/games/game?id=20 5030 5044

/grid/private/user?username=
joao

252 252

6 Teste e Qualidade de Software

As we can see, we have quite the large latency, which can be explained due to be using a VPN
and some problems on the server side, but as we can see in the actual difference between
requests, they do not take long to be processed internally, proving to be very good results for
our developers.

Img 4.2 - Some of our JMeter Results

4.6 Production Analysis

As suggested in the project guidelines, we also used a tool to monitor the production
environment. In our case, we decided to use ELK stack, in which we connected an
Elasticsearch cluster to our MySQL database through Logstash. Then, to monitor all the
data on the database, we used Kibana. In the below images, we can find some prints of the
monitoring panel on Kibana:

Img 4.3 - Graphical view of the new data added in the last hour to our database

With Kibana, we can more easily monitor the new additions to our database and monitor all the
existing data. We can visualize using one of the vast array of graphs this service provides, as
for example an histogram, as we can see in the following image.

6 Teste e Qualidade de Software

Img 4.4 - Histogram with the games release dates

As the other project components deployed on the server, all these three tools were deployed
using docker.

