
Face Detection from Images
Diogo Silva, Nº MEC.: 89348

DETI
Universidade de Aveiro

diogo04@ua.pt

Pedro Oliveira, Nº MEC.: 89156
DETI

Universidade de Aveiro
pedrooliveira99@ua.pt

Abstract—Face Detection is a computer vision problem that
aims to attempt to accurately identify human faces that may,
or may not, be present in a given photograph or video. Many
efforts have been directed at this problem since the early 2000’s,
with it having started as a subbranch of the problem of Object-
Class Detection but having evolved into a main focus of machine
learning algorithms due to its prevalence and paramountcy to
the paradigm of Facial Recognition, another problem that is
nowadays used in a wide-branch of technologies and biometrics.

Index Terms—Supervised Learning, Object-Class Detection
and Localization, Face Detection, Deep Learning, Classification,
Cascade Classifiers, Histogram of Oriented Gradients, State-
Vector Machine, Deep Convolutional Networks, Support-Vector
Classifiers

I. INTRODUCTION

This report serves as a compendium and thorough expla-
nation of all the techniques, methodologies and algorithms
adopted for the elaboration of the final TAA - Tópicos de
Aprendizagem Automática (Topics of Automated Learning) -
project at Universidade de Aveiro. In sum, the task consisted
in the application and testing of several Machine Learning
techniques, either developed during class or self-taught, in the
solving of one of the several problems, previously proposed
by the course’s head teacher, Pétia Georgieva.
More concretely, the issue we decided to tackle was entitled
Face Detection from Images and consisted in the exploration,
comparison and tweaking of algorithms capable of accu-
rately locating and localizing human faces in photographs,
where locating refers to finding the accurate coordinates of
a possible face within the picture, whilst localizing involves
demarcating said face, usually within a bounding box. This
problem started off as a sub-branch of the problem of Object-
Class Detection, which engulfs all computer vision problems
related to identifying the presence and/or positions of certain
objects in a given image or video. Since the early 2000’s,
however, Face Detection grew into its own merit due to its
major role in paradigms such as biometric analysis, with it
being the baseline for the widely studied and sought after
challenge of Facial Recognition. At first, the challenge of
simply identifying that a picture has faces in it, and what their
positions are, may seem like a trivial problem. And indeed,
for a human, it is, but not so much for a computer due to how
dynamically different human faces are from each other, as well
as factors such as head rotation, pitch and yaw, features such

as moles, freckles, wrinkles or facial hair, anomalies such as
piercings or other accessories, hair color or obscurity (i.e, hair
covering notable facial landmarks such as the eyes), age, and
the list goes on.
In the following sections we will be describing our approaches
to the problem at hand, starting with the a brief explanation
of some of the most widely known and utilized algorithms for
the Face Detection problem in section 2, proceeding by the
analysis of the given data-set in section 3 as well as mention
some techniques and preprocessing applied to our images.
Sections 4,5 and 6 talk about and thoroughly describe the three
machine learning procedures that we decided to implement and
study for this problem - Cascade Classifiers, HOG Windows
with SVM Classifiers and MTCNNs. At last section 7 serves
as a conclusion and landing point where we briefly make
an evaluation of the processes applied, make suggestions for
possible future improvements and analyze and compare our
three implementations.

II. PRIOR WORK DONE ON THE SUBJECT

In this section we will be presenting some of the most
widely know algorithms applied to the Face Detection prob-
lem, as well as referencing their historical importance and
current place in the state-of-the-art.

A. Cascade Classifiers

Cascade Classifiers, first described by Paul Viola and
Michael Jones in 2001, are possibly the most famous technique
of feature-based face detection. Feature-Based face detection
algorithms pride themselves on being fast and effective, which
has allowed them to remain relevant for a couple of decades.
They center around the idea of attempting to find objects, or
in our particular case, human faces, by searching the image
for a given set of features or patterns that can be commonly
found in the targeted objects. Cascade Classifiers in particular
are but one step of the Viola-Jones Object Detection algorithm
which requires 4 steps in order to be able to detect whether a
face is present or not in a picture:
• Haar Feature Selection derived from Haar Wavelets
• Integral Image Conversion
• AdaBoost Training
• Cascading Classifiers
Let us focus a bit more on what each of these steps entails.



1) Haar Feature Selection: While it’s true that no two
human faces are exactly equal, there are undoubtedly certain
commonalities such as a darker eye region comparatively to
the upper cheeks, certain bounded areas where you’d expect to
find a nose, eyes or mouth, brows, and other such landmarks
[4]. This idea of similar characteristics between faces can be,
and is, further expanded when broadening the concept to that
of Object-Class Detection, since objects of the same class can
be said to share, at least, some aspects. The Image 1 showcases
the identification of some of these Haar facial features.

Fig. 1. A subset of images showing the identification of certain Haar Features.
It exemplifies the change of light intensity between certain areas of the face
[4]

The manner in which each of these Rectangle Features’s
values are computed boils down to summing all pixels in the
black area and subtracting the pixels in the white areas. As
such, we have the following formula. Note that B refers to
the number of black pixels, whilst W points to the number of
white pixels.

RectangleFeatures =

B∑
b=0

bV alue −
W∑

w=0

wV alue

Originally, Viola’s and Jones’ paper referenced three types
of rectangle features:
• Two-Rectangle Feature - The difference between the sum

of pixels within two rectangular regions.
• Three-Rectangle Feature - The sum within two outside

rectangles subtracted from the sum in a center rectangle.
• Four-Rectangle Feature - Computes the difference be-

tween diagonal pairs of rectangles.

Fig. 2. An image showing the different types of Haar Features referenced in
the original paper by Viola and Jones. a) Two Rectangle Features, b) Three
Rectangle Features, c) Four Rectangle Features [10]

These rectangles are then applied as a convolutional kernel
over the image we want to detect faces on, extensively.

2) Integral Image Conversion: Due to how taxing the
prior step of identifying rectangle Haar Features using a
convolutional kernel can be, Jones and Viola proposed a way
to transform the images’ representations, called the Integral
Image, that allowed any rectangular sum to be possible using
only 4 values, massively speeding up the process of scouring
our image for the features. For each pixel (x,y) of the original
picture, the integral image of the pixel is given by summing
the intensity value of all pixels above and to the left of said
pixel,

ii(x, y) =
∑

x′≤x,y′≤y

i(x′, y′)

Where ii(x,y) corresponds to the integral image of the pixel
at coordinates (x,y) in the original picture and i(x,y) points to
the intensity value of the pixel at coordinates (x’,y’).

Fig. 3. Example conversion of an image in a whole integral image [11]

Whole integral images are then useful because one could
easily compute the sum of pixel intensities in a given area of
the original image using, at most, 4 values. For example, as is
shown on the image 4, imagine we set 4 named subareas of
the whole picture, A,B,C and D. The value at point 1 can be
given by the sum of all pixels in area A, the value at point 2
the sum of all pixels in area A plus the sum of pixels in area B,
at point 3 we have a value given by the sum of pixels at area
C and A, and finally, the value at point 4 is given by the sum
of pixels in area A, B, C and D which can be computed by
the operation (1.+4.)-(2.+3.) (note that these correspond to the
values at point 1.,2.,3. and 4. accordingly). Note how easily
we computed the value inside a rectangle using only 4 array
references.

When running the convolutional kernel for all of our rectan-
gle features extensively on the image, using the integral image
we avoid having to recompute set sums of pixels therefore
saving us quite a bit of computation, as well as speeding up
the process.

3) AdaBoost Training: Short for Adaptive Boosting, this
machine-learning meta-algorithm by Yoav Freund and Robert
Schapire is used in the Viola-Jones algorithm to both select a
small subset of features (taking into account that for small
24x24 images, it’s expected that we’ll end up with over
160,000 features [4]) and train our classifier. This algorithm
is chosen, both due to its versatility and capability of being
used alongside other algorithms, but also due to how much

2



Fig. 4. Example of subdividing an image in 4 sections. The value at point
4. is given by summing all pixels in each area A,B,C,D, or more easily, by
performing the computation (1.+4.) - (2.+3.) [4]

Fig. 5. Another example of usage of an integral image. In this case we can
get the sum of all pixel values in region A by simply looking at correspondent
integral pixel of the rightmost, down most pixel of the area (sum of pixels in
area A = 4). For area B we simply do the same but also subtract the value
of area A (sum of pixels in area B = 6 - sum of pixels in area A = 6-4 = 2)

it improves the overall performance of the process. AdaBoost
works by being given an ensemble of weak classifiers, ob-
tained by applying the selected features to a set of training
images (these classifiers are going to label each of the training
pictures as positive or false corresponding to whether they
contain or not a face. Note that these training pictures should
be simple and equal in size). AdaBoost then combines the
quorum of weak-classifiers into a stronger, more accurate
model.

4) Cascading Classifier: At last, we are finally ready to
talk about the namesake of this subsection, the Cascading
Classifier. The idea for this algorithm, as proposed by Viola
and Jones, came from the fact that, on most pictures, even
those containing faces, most of the screen-space is dedicated
to non-faces (such as backgrounds or other objects) and as
such, giving equal importance to all subareas of an image,
when searching for features, is illogical and computationally
unnecessarily taxing. What they proposed was an algorithm
that would reject image sub-regions that probably do not
contain a face (of course, aiming to reduce false positives
to a maximum). The name cascading classifiers comes from

Fig. 6. AdaBoost works by combining an ensemble of weak classifiers into
a more accurate one, whilst reducing the amount of features used by finding
the sections that best split positive and negative images [13]

the fact that we’ll be putting each of the image’s sub-regions
through a set of classifiers and, if at any point, one of the
classifiers defines the region as not containing a face, that
window is discarded, if the classifier outputs positive, and is
not the last classifier on the cascade, the image is put through
the next one, and so one, until it’s passed all classifiers,
at which point the sub-region gets flagged as potentially
containing a face and gets puth through further processing,
or gets rejected by one, at which point the entire region is
ignored. With this technique we manage to avoid having to
fully scour the entire image, since we have divided it in
subsets, and shorten the time it takes for a section with no
face to be discarded and devoid of further computation and
search.

Fig. 7. An example of how multiple classifiers are set in a ”conveyor belt”.
All image sub-sections get put through this conveyor belt, and if at each
passing of a classifier the region is set to not have a face, it gets removed.

Ideally the initial classifiers should eliminate most negative
examples at a low computational cost, by looking at more
telling signs as to whether a face is or is not present. As we
cascade further, each classifier should be more minute and
filter less obvious non-faces (at a higher computational cost).
The idea is that the first classifiers will operate on more regions
than the latter ones, and will act as a coarse filter, whilst the

3



latter, more complex ones, operate only on the most promising
regions, dedicating more computation and processing only
where its deemed likely (by the prior classifiers) for a face
to be [1].

The idea and implementation of Cascade Classifiers has
been at the forefront of Face Detection problems for a couple
of decades by now, which goes to show how revolutionary
this technique was. Throughout the years it has received
multiple tweaks and improvements, and has been integrated
into a wide-variety of consumer products, such as cameras
and smartphones.

B. Object Detection with YOLO

If we consider an algorithm that’s already trained to identify
faces, we also have to think how it can detect those faces. One
of the ways to do it is by starting with a region in the picture
we’re working with, and go stride by stride looking for the
object the network was trained to look for.

Needless to say, an extensive research, by feeding all
possible regions with a certain size to the neural network
will be too computationally expensive, so instead, we build
a convolutional network with a layer dedicated to calculating
all possible regions and feed all of them at once, therefore
improving the overall performance of the network.

The next problem to tackle with item detection is what if
one of the sections finds part of the item we’re looking for, but,
since it’s only a portion, it won’t be recognizable, as depicted
in Fig. 8. [12]

Fig. 8. Only a portion of the car is in the window, so it can’t be labeled as
a car

The solution to this is an algorithm called YOLO (You
Only Look Once). YOLO was introduced in a 2016 paper, led
by American researchers. [17] As described in their paper, the
system they developed was as simple as just one convolutional

network that would predict several bounding boxes and the
respective class probability. This means that the CNN will
only have to inspect the image once.

The system starts by dividing the image in an SxS grid,
then check if a center of an object is in that cell. If so, the
grid then becomes responsible for the object. The cell does
this by predicting B bounding boxes and its confidence score.
This confidence level is supposed to represent how confident
the model is about there being an object within that bounding
box. If we don’t think an object is in the box, the confidence
level should be 0; otherwise it should be the IOU (Intersection
over Union) between the predicted box and any ground truth
box.

In this context, they specify that each bounding box is
responsible to make 5 predictions: the coordinates, (x, y), for
the center of the object, the height h and width w of the object
and finally the confidence score.

Each grid will predict for every C conditional class prob-
abilities, Pr(Ci|Object), conditioned on the grid cell that
contains the object. With this value, it’s possible to calculate
the probability of the class in the box, by the following
formula:

Pr(Ci|Object)∗Pr(Object)∗IOU truth
pred = Pr(Ci)∗IOU truth

pred

Fig. 9. The Basic YOLO Model

Finally, to quickly go through the network they imple-
mented, it follows architecture shown in fig. 10. It’s composed
of 24 convolutional layers and two final fully connected layers.

Fig. 10. The Basic YOLO Model

4



C. Regions with CNN

In 2014, a paper was published by a team from UC Berkeley
describing a new way to detect items with computer vision.
They combined the techniques from regular convolutional
neural networks with region proposal, coining the technique
as Regions with Convolutional Neural Network, or R-CNN.
While the paper they published focuses on item detection,
as opposed to being specifically about face detection, the
algorithm would become the State of the Art for the time
being, as it’s the algorithm with most accuracy in detecting
faces.

The R-CNN developed had three different components to
it [2]: one to create region proposals, independent of any
category; then one large CNN that would extract the features
from this region as a fixed-length vector; and finally a class-
specific SVM module that would classify the region.

This module was capable of improving on the last item de-
tection algorithm, PASCAL VOC 2012, being more scalable,
simpler, and with a 30% improvement rate. They achieved
these results by applying two major insights: apply a high-
capacity convolutional neural networks to bottom-up region
proposals in order to localize and segment objects; and follow
a paradigm of pre-training the CNN with a dataset that’s
abundant with important data, and only then fine tune the
network with the scarce data that comes with face detection.

Finally, the authors of the paper finished their work by
noting:

We conclude by noting that it is significant that we
achieved these results by using a combination of
classical tools from computer vision and deep learn-
ing (bottom-up region proposals and convolutional
neural networks). Rather than opposing lines of
scientific inquiry, the two are natural and inevitable
partners. [2]

D. HOG Windows

HOG, or Histogram of Oriented Gradients, Windows are
a technique for the solving of problems related to Object
Detection. As such, they can be adapted to solve our problem
of Face Detection and Localization. The base idea behind this
algorithm is to extract an image’s features into the form of
a vector which can then be fed into something like an SVM
which will assess whether a face is present in a region of the
picture or not. Features, in the case of HOG Windows, aren’t
Haar Features like on the Viola-Jones algorithm, but are in
fact the distribution of directions of gradients of the image’s
subsection.

Fig. 11. The original process implemented for human body detected as
originally proposed by Dalal and Triggs [4]

Computing the image’s gradient boils down to having a
sliding window do a passover the entire image so that, on

each pixel, we look at its surrounding pixels and determine
how dark it is compared to its neighbours (which can be done
by using the kernels in Figure 12). The gradient is basically
the arrows which show the direction in which the image is
getting darker. Extensively repeating this process will make it
so ”each pixel in the image is replaced by an arrow which
shows the flow from light to dark across the entire image” [6].
The reason we want to get the image’s gradients is because
faces tend to commonly contain the same shifts in light, even
if their overall structure may vary, and as such we can use
these shifts to identify landmarks such as the nose bridge and
eye pockets, and in a larger scale, detect a face through the
usage of light change patterns, no matter how light or dark
the image may be (since we’re not looking at overall light but
at light shifts).

Fig. 12. The two kernels used to compute the gradients

The gradients, however, give us too much unnecessary
information and detail, we don’t actually need to see the shift
in light for every single pixel. What we want is to get the
basic flow of light in order to identify basic image patterns.
We can achieve this by breaking the image into small sections,
usually 16x16 pixels and, for each of these, count how many
gradient points in each major direction there are (i.e, how many
gradients point up, up right, right, down right, and so on).
With this we can build the so-called Histogram of Oriented
Gradients. We then replace that region with its most common
gradient direction.

Fig. 13. An example of the process of creating the gradients and applying
the HOG algorithm [14]

5



We then train our model, commonly with an SVM Classifier,
which will then produce a pattern extracted from the HOG
versions of our training faces. This pattern can then be used
with the HOG version of the images we want to detect faces
on in order to detect if a similar pattern can be found within
the image.

Fig. 14. An example of the process of comparing an HOG face pattern with
that of an image we want to try to find a face in

E. MTCNN

Although feature-based face detection techniques such as
the Cascade Classifiers or HOG Windows perform decently
well with some accurate results and averagely fast processing
time, the state-of-the-art for these problems lies elsewhere.
Notably, astonishing results have been achieved using Deep
Learning methods such as the Multi-Task Cascade Convolu-
tional Neural Network - MTCNN [15]. This technique consists
in the usage of three separate convolutional networks arranged
in a cascading layout - the P-Net, R-Net and O-Net. From a
very basic standpoint, the process used in the MTCNN consists
in first rescaling the image we want to detect faces in into a
wide-range of sizes. Then, we give this set, called an Image
Pyramid, to the first network, the Proposal Network, which
will propose candidate regions which may contain a face. After
this the second model, Refine Network will filter the bounding
boxes proposed by the first network. Finally the third and last
model, the Output Network will propose facial landmarks, i.e,
will try to find the positions for the mouth, eyes and nose. This
process is exemplified in image 15.

We will go more in-depth about the individual structure of
each of the utilized networks, as well as explain all different
cogs in motion that allow the MTCNN to function, but for
now we want to leave the idea that this algorithm has become
the staple face detection solution in the past years due the
amazing results it showcased when ran using the established
benchmarks. [1]

F. Faceness Net: Face Detection through Facial Features

In 2017, a new paper on face detection was published, which
called for the focus on the facial features of the person to better

Fig. 15. The processing of finding faces in images using the MTCNN
technique. ”The proposed CNNs consist of three stages. In the first stage, it
produces candidate windows quickly through a shallow CNN. Then, it refines
the windows to reject a large number of non-faces windows through a more
complex CNN. Finally, it uses a more powerful CNN to refine the result and
output facial landmarks positions.” [15]

detect faces in a picture, even where they may be clouded or
not in the first or second plane of the photograph. In the time
period of the paper, there were already many different papers
being released on this subject, but none that gave as much
focus on the actual features of a face, like the nose, mouth,
beard, etc.

In Figure 17, we can see that, by focusing the neural
network on the features themselves, the algorithm can detect
faces even when a great part of the face is occluded. The
model is also capable of detecting faces from various angles
without having to specifically training the model for it, with
a specific dataset.

The algorithm works has two basic stages. The first stage
would be to use a set of CNN with the specific purpose
of generating a partness map for each feature, which would
indicate the location of the feature; with the locations of each
feature, the algorithm would rebuild the image, making a face
proposal, and give a score; if this rank was big enough, it
would mean that the face was believable and therefore present
in the picture. The second stage of the algorithm would then
focus around refining the candidate window generated from
the first stage using MTCNN, where face classification and
bounding box regression are optimized.

All of these reworkings of the network resulted in a face
detection algorithm with promising results in performance on
various different face detection datasets.

6



Fig. 16. Facial Features detected from the algorithm

III. DATA-SET ANALYSIS

A. Data-set description

The data utilized for the elaboration of this project, made
available in this link, is one of the most widely used and
well known benchmark data-sets for Face Detection solution
testing. The WIDER FACE data-set, as it’s called, is a free
set of images released by the Department of Information Engi-
neering’s Multimedia Laboratory at the Chinese University of
Hong Kong for the purposes of benchmarking solutions to the
problem of Face Detection and Localization. It contains over
32,000 images with circa 400,000 faces divided amongst three
different groups - Training, Validation and Testing images.
These groups’ images are then further divided into ”thematic
folders” which hold images that relate to each other in terms
of content. For example the folder Dancing contains images
of people dancing, whilst the folder Riot contains photos of
riots. It should be stated that all images differ greatly from
each other both in terms of dimensions but also in terms of
quality.

These images may, of course, contain one, multiple
or no faces. An additional folder called Face Annota-
tions is also available for download. Within it lie several
text files describing the contents of each image. Of no-
table relevance are the files wider face train bbx gt.txt and
wider face val bbx gt.txt which contain, for every single
image in the Train and Validation sets correspondingly, meta
information about how many faces are present in that image,
alongside their position, expressed with the format ”x1, y1,
w, h, blur, expression, illumination, invalid, occlusion, pose”,
where x1 and y1 are the coordinates of the top left pixel of

Fig. 17. A small example of the images contained in the 0–Parade folder of
the WIDER Train set

the bounding box surrounding the face, w and h are the total
width and height of said box and the other metrics describe
what the face is like in terms of blurriness, whether it has an
exaggerated expression or not, what the illumination is like,
and so on. A better description for each of these fields can
also be found on the folder’s readme.txt. One other file is
the wider face test filelist.txt which includes the path to each
image in the Test folder.

Fig. 18. Example of how each image is described in the
wider face train bbx gt.txt file, The first number, 9, is the total amount of
faces in the image, whilst the following lines describe their locations

B. Statistical analysis
The Wider Face set have their images distributed as 40%

Train, 50% Test and 10% Validation. More specifically, the
Train set has around 13000 images (1.5GB), the Test has about
16000 (1.9GB) and the Validation set sums up to about 3300
pictures (365MB). Each of these images has a varying number
of faces, or none at all, and are, as aforementioned, split into
folders which group them by theme.

The following figures 19 and 20 showcase how many
pictures we have per number of faces on both the Train and

7

http://shuoyang1213.me/WIDERFACE/


Validation sets. Unfortunately, due to the data’s nature these
images are rather inconclusive. This is due to the fact that we
have an exorbitant amount of pictures with few faces (most
pictures having only one face), whilst remaining true that we
have photos with way more faces (with some having over
1500), albeit at a very reduced number (most pictures have 1
face but since our range of number of faces is so large we
can’t even see that one single line).

As these were inconclusive, we created two additional
tables. Table 1 shows the number of pictures with 0, 1 and
multiple faces for both of our sets. Some additional insight
we got was that, by looking at the two images (19 and 20),
we can also confirm that both the Train and Validation folders
have a very similar data silhouette, by which we mean they
have a proportional distribution of faces per image to each
other.

Fig. 19. Number of images per face number in the Train Set

Fig. 20. Number of images per face number in the Validation Set

Two problems arise from the conclusions taken from look-
ing at figures 19 and 20. The first being that we have a very
reduced number of negative pictures, i.e, pictures with no faces
(as can be seen in table 2) and the second being that its not
easy or even surmountable to use pictures with multiple faces
to train our models. Ideally we want to use either pictures with

TABLE I
NUMBER OF IMAGES PER NUMBER OF FACES

Test 0 Faces 1 Face >1 Faces
Train 4 4631 8245

Validation 0 1122 2104

no faces, or pictures with only one face for training and model
creation purposes. The way we treat these problems will be
further explained on the following sections.

TABLE II
NUMBER OF POSITIVE AND NEGATIVE IMAGES

Test Positive Negative
Train 12876 4

Validation 3226 0

C. General Preparation and Data Pre-Processing

Although that, when explaining each of the algorithms
implemented we will also be explaining specific treatments to
the images for them to go in accordance to what the algorithms
require, there were some general tweaks that we had to do
to the images in the dataset that are transient to all of the
algorithms and which we will be explaining in this subsection.

Firstly, we had the problem that we have no feasible way
to discover the classification of the images present in the Test
folder. Research indicates that these images were purposely
left unclassified as these are the ones that the team at WIDER
use to test face detection algorithms, and as such, they’d
rather be sent algorithms for testing, rather than having the
developers use the Test set themselves. They do include a set
of evaluation scripts written in MatLab, however these only
used the Validation set, rather than the Test one. With all of
this in mind we decided it’d be best to create the Test, Train
and CV sets on our own, as well as our own evaluation script.

Our first efforts were aimed at dividing our images in the
Train and Validation folders into a Train and Test set of images
of appropriate sizes. We had to take our images in the Train
set and break them down into positive and negative pictures,
i.e, images of single faces and images with no faces at all. To
create our positive images, we utilized the information in the
wider face train bbx gt.txt file, which allowed us to create
images that consisted only of the bounding box of each face in
each picture in the Train set. We did this until we had exactly
12000 Train positive pictures. Figure 21 shows a sample of
some of the positive images we generate.

As for the negative images we created an algorithm that
would go through each image in the train set and try to
generate a new image of random dimensions that would not
intersect any of the bounding boxes around the faces of that
particular image. Some of the resulting negative images for
the train set can be seen in image 22.

Unfortunately, due to the size of the set of negative images,
we’ve had a lot of problems trying to get random images
that were large, as it was advised from the research we

8



Fig. 21. Examples of some of our positive images present on our Train set

Fig. 22. Examples of some of our negative images present on our Train set

had done, while being completely negative images, meaning
having no faces in them. So we decided to use a different
dataset. We used a dataset of landscapes from Kaggle [28],
landscape photographs usually have really high resolution, and
not having any people on them. For the problem we were
having, this seemed like it would be an easy fix, resulting in
the following examples of negative examples, in image 23.

It should be stated that both positive and negative images
were created for our sets. We should also inform that these
images vary in dimensions and are encoded in RGB. Two text
files were created for each set, the positive info.dat which
contains the paths to each of the positive images in the set
and the negative info.txt which has the relative path to each
of the negative images in the set. Table III shows how many

Fig. 23. Examples of the new negative images

positive and negative images our two sets ended up with.

TABLE III
NUMBER OF POSITIVE AND NEGATIVE IMAGES ON OUR TRAIN AND TEST

SET. NOTE HOW THE TRAIN SET HAS MORE IMAGES THAN THE TEST SO
THAT WE CAN FOLD IT AND CREATE A CV SET AS NEEDED BY OUR

MODELS.

Test Positive Negative
Train 12000 12000
Test 10000 10000

Finally, we have to talk about our methods of testing the
models we’re going to be comparing in these project. As said
before, we could not depend on the WIDER Face’s evaluation
scripts due to some technical problems we had on our part.
So we implemented two simpler ways of testing our models.
We implemented a test that would be similar to WIDER’s
way: we used a subset of the images in CV’s dataset, as we
can trust the images were correctly identified. We named this,
our ”complex test”. While this test will tell us how ready
the model is to identify faces in a realistic image, it fails to
give us precise measures like accuracy or precision in terms
of, whether our algorithms can classify an image with a face
as positive, and an image with no faces as negative. So we
implemented a second way to test the models, based around
using another positive and negative set. If the model correctly
identifies which is which, this will allow us to see number
of true positives (faces the model correctly identified), true
negatives (images the model correctly identified as negative),
false positives (faces the model thought he identified), and
false negatives (faces the model could not identify). We called
this our ”binary test”.

Using these metrics, we’re capable of calculating three
important metrics in a classification problem: global accuracy,
which means the ratio of correct answers and total given
answers; the precision, which tells us the amount of positives

9



the model guessed that were actually correct; and the recall,
the amount of global positives the model was able to identify.
The following formulas are the ones used to calculate each of
these values:

acc =
TP + TN

TP + TN + FP + FN

precision =
TP

TP + FP

recall =
TP

TP + FN

It’s important to have these three metrics when describing
the performance of a model, as simply going by accuracy tells
us to little about how it’s doing: a 50% accuracy may mean
that the model only guessed half of the positive results and
half of the negative, or it may mean it guessed all the negatives
and no positives. A model with high precision will tell us that
we can be fairly confident in the positives it has identified,
but it may be overall not guessing a lot of the positives in the
set, resulting in a low recall; while a model with high recall
will tell us that it’s been guessing all the positive images, but
it may be identifying all images as positive, resulting in a low
precision.

IV. CASCADE CLASSIFIERS

A. Introduction

Now moving on to actual implementations and testing of
these algorithms let us start off with the predecessor and, at the
time groundbreaking, algorithm for face detection using Haar
feature-based cascade classifiers -the Viola-Jones algorithm.
We have already explained in section 2 the base steps for this
technique, but to reiterate, we have:
• Haar Feature Selection derived from Haar Wavelets
• Integral Image Conversion
• AdaBoost Training
• Cascading Classifiers
To further elaborate, we can extract the Haar Features

(of which we will be using the three types shown in image
25) using a sliding window. Each feature is nothing more,
nothing less than the value we obtain by subtracting the sum of
pixels on the white rectangle from the sum of pixels under the
black rectangle. These features are basically our convolutional
kernel, and as such, all possible sizes and locations of each
kernel (each Haar Feature type) on the image will have to
be computed, which is not viable since, even for a small
24x24 images, this would result in over 160000 features to
be calculated. [18].

To ease the computation of summing the pixels under the
white and black rectangles, Paul Viola and Michael Jones
proposed the conversion to Integral Images which is able
to reduce the calculations for the Haar Feature of any given
pixel to an operation involving just 4 pixels (no matter how
large the image may be). This is explained in more detail on
Section 2.

Fig. 24. The three types of Haar Features [18]

The third concept to keep in mind is that most features
calculated are actually irrelevant. Figure 25 shows the ap-
plication of two Haar Features to an image. These are both
appropriate, the first one focusing on the fact that the region
of the eyes is often darker than the region of the nose and
cheeks, whilst the second being useful due to the fact that
normally, faces tend to have a darker eye region comparatively
to the nose bridge. Applying these same kernels to the cheek
or chin area, however, would not be appropriate as there is
no meaningful information or patterns to extract. This is why
we use Adaboost in order to pick amongst the best, most
promising features, whilst disregarding the others. The basic
way it works is, for our training images, each and every feature
will be applied. For each of these, Adaboost will find the best
threshold which will classify the faces as positive or negative.
Then we can pick only the features that produce the minimum
error rate, i.e, the ones that more accurately allow us to classify
the image has having a face or not. ”The process is not as
simple as this. Each image is given an equal weight in the
beginning. After each classification, weights of misclassified
images are increased. Then the same process is done. New
error rates are calculated. Also new weights. The process is
continued until the required accuracy or error rate is achieved
or the required number of features are found” [18]. In the end,
we’ll end up with a final classifier which has been created by
the weighted sum of all of our weak classifiers.

Fig. 25. Application of two Haar features, one to detect that the eye region
is darker than the nose bridge and one to detect that the eye region is darker
than the cheeks and nose regions [18]

10



Lastly there’s the concept of Cascade Classifiers, per se.
This comes from the fact that, on most images, there are
more faceless regions than not, and as such applying all of
our features to all of our image’s sub-windows would be
inefficient. Preferably we’d like to be able to discard the
less-promising areas as soon as possible to avoid unnecessary
computations, allowing us to focus on the regions that might
actually have a face. Cascade Classifiers work by, instead of
applying all features on a window at once and seeing the result,
we group them into different stages of classifiers, which will
then be applied one-by-one. Ideally the first classifiers should
be of fairly low computation and act as a general filter for
the most obviously faceless regions. As we progress in the
step hierarchy the classifiers should be more strict and act to
coarse out for more minute details. Originally, the authors of
this algorithm used a 6000+ feature detector, divided amongst
38 stages with 1, 10, 25 and 50 features in the first five stages
accordingly and managed to obtain over 95% accuracy in a
short amount of time.

B. OpenCV Implementation

The OpenCV library contains an implementation of the
Cascade Classifier algorithm as proposed by Viola-Jones -
the cv::CascadeClassifier class, which is capable of receiving
and reading trained classifier models (stored in xml files)
using the cv::CascadeClassifier::load method. Alternatively,
it also provides a constructor which can also receive the model
to be used. Both the method and the constructor receive as
parameters the path to the file that contains the model. We
can then utilize the cv::CascadeClassifier::detectMultiScale
method to detect the objects within a given image. This
function returns a list of boundary rectangles surrounding the
detected faces, eyes, or both. As inputs, this method has the
following parameters:
• image - A matrix of type CV 8U (a specific OpenCV

binary image representation) corresponding to the image
we want to detect faces on

• scaleFactor - Parameter that specifies how much the im-
age is reduced at each image scale. This is used because
OpenCV’s cascade classifier implementation makes use
of an Image Pyramid - a mutli-scale representation of
an image done to make it so the face detection is scale
invariant, i.e, we can detect both small and large faces
using the same size of detection window. We could either
due this or use a variable size window, which would be
both more cumbersome and harder to implement.

• minNeighbors - Parameter that specifies how many
neighbors each candidate rectangle should have to retain
it. It will basically affect the quality of the detected faces.
A lower value will cause more false positives, but a
higher, more strict value will run the risk of creating false
negatives.

• minSize - Minimum possible object size. Objects smaller
than this are ignored

• maxSize - Maximum possible object size. Objects bigger
than this are ignored.

Now that we know how we can use OpenCV’s Cascade
Classifier to detects faces, we are now ready to move on to
actually implementing it. Before that, however, we would like
to make it clear that this algorithm can be used, not only for
Face Detection, but also for any other type of Object-Class
Detection and localization problem, granted the appropriate
model is trained or given.

C. Using a pre-trained model

Firstly, let’s use one of OpenCV’s pretrained models for
face detecting using Haar features. There are several models
available for free download and use in this repository. Due to
being the one suggested for use on our problem, we chose the
haarcascade frontalface default.xml model [4].

We started off by implementing a set of methods that would
create a new cascade classifier and get the bounding rectangles
around the faces of a given image. Using the default values
of the detectMultiScale method we took 104.6 seconds to
run through our complex test method and 117.4 seconds for
our binary test. Overall the results obtained were somewhat
underwhelming, as seen on tables IV and V. The algorithm
seems to be disregarding a lot of the faces in the images,
which is leading us to a high number of False Negatives, as
well as identifying objects that are, indeed, not faces, which is
increasing our False Positives. All of these factors lead us to
very unsatisfying accuracy, precision and recall values. Figure
26 exemplifies how the algorithm is misclassifying regions as
containing faces.

TABLE IV
NUMBER OF TRUE POSITIVES, FALSE POSITIVES AND FALSE NEGATIVES

OBTAINED FOR THE TEST SET USING OPENCV’S PRETRAINED MODEL

Test T. Pos F. Pos F. Neg T. Neg
Binary Test 835 349 9194 9790

Complex Test 1252 3607 18753 -

TABLE V
ACCURACY, PRECISION AND RECALL VALUES OBTAINED FOR THE TEST

SET USING OPENCV’S PRETRAINED MODEL

Test Precision Recall Accuracy
Binary Test 0.705 0.083 0.530

Complex Test 0.257 0.06 -

There are two main parameters that we can change that will
have a notable impact on our results - the Scale Factor and
the Minimum Neighbors. Changing the Scale Factor will
change the scale increment noted on each of image pyramid’s
steps. Basically our model has a fixed size (depending on the
training it received) for the pattern it’s trying to recognize
faces with. As such, it means that it will be more capable
of detecting faces of a certain size over others. By creating
an image pyramid, however, and re-scaling our input image,
we’re effectively re-scaling the sizes of each face in the picture.
This means that, even if for the original size a face may be too
small or big to be recognizable, on the next resize iteration

11

https://docs.opencv.org/master/d1/de5/classcv_1_1CascadeClassifier.html
https://github.com/opencv/opencv/tree/master/data


Fig. 26. One of the images we supplied. As we can see we’re detecting all
faces correctly, but we have some additional detection that are in fact not
faces.

it might be just right. By using a smaller step, presumably,
we increase the chances of matching the face’s size with that
of the model, however, since we’ll be taking smaller steps
and doing more passes through our image it is also expected
that it will take longer to work the testing algorithms on each
individual image.

Indeed, figure 27 does prove that, the bigger the step, the
less time it takes for us to run the Viola-Jones algorithm on
our test images. Figures 28 seems to indicate that, although
that for smaller steps we have quite the decent number of true
positives, for our complex test we do have quite a big number
of false positives and negatives. This discrepancy between the
two tests may be due to the fact that, since on the complex test
we’re using complex images that may contain multiple faces of
varying sizes scattered throughout the image, the scale factor
will hold more influence over the results, than for the binary
test (which uses simpler images that either do, or do not have
a face).

Looking at figure 29 we can see that our precision seems
to increase the bigger the step we take, whilst the recall and
accuracy tend to have better values for the smaller steps. This
can be easily explained by looking back at the values in figure
28. Our precision goes up because, whilst our true positives are
taking a hit and decreasing, our false positives are shrinking
way more substantially. The other two values can be explained
in similar ways by looking at the rates at which the true and
false positives and negatives are evolving.

Now, as for the Minimum Neighbors, this parameter
specifies for each candidate bounding box how many other
neighboring bounding boxes it needs to have in order to
continue being considered a possible face ping. Basically,
when our sliding window goes through the image and detects
a face it draws a box around it. Depending on the stride this
means that the same face can be inside the sliding window
multiple times, causing multiple boxes to be drawn around
it - neighbours. It’s expected that this is the parameter that
will affect our detection accuracy the most as having a higher
minimum neighbor count will make the detection stricter
leading to way less false positives. However, we run the risk

Fig. 27. The time in seconds that it took to go through our test set depending
on the scale factor. The smaller the step, the more time it takes

of being too strict and discriminating too much, ending up
with an increasing number of false negatives.

As figures 30 illustrate, we do end up creating way more
false negatives (and by extension, less true positives), the more
neighbours we use, but at the same time it is also observable
that we’re getting way less false positives and way more true
negatives. This is due to the fact that, as aforementioned, we
are being stricter with the faces we’re detecting. Looking at the
graphs in figure 31, our overall accuracy does suffer the more
neighbours we’re getting, because technically we are getting
less correct predictions (due to our false positives). However
our precision improves dramatically, with a notable spike at
about 7 neighbours, which is caused by us having a higher
proportion of positive identifications actually being correct
(i.e, we’re being more strict with our detection by forcing
each identification to only be viable if surrounded by a bigger
number of neighbouring boxes bounding to the same region,
hence being more sure that each face we detect is an actual
face). We should also note that the time it took to run the tests
was also accounted for, and unlike the scale factor, this didn’t
seem to depend on the minNeighbors, and as such, to avoid
visual clutter, that analysis has been omitted.

Looking through our obtained graphs, we believe that an
acceptable value for our minNeighbors would be around 6,
since, although the accuracy may be rather low, our precision
was pretty good. This means that we’ll be, overall, running the
risk of missing some faces, however, we’ll be more sure that
the faces that we do find are indeed faces. There’s also the
fact that there may be other reasons as to why our accuracy
has been so low consistently through this section and that we
may possibly be able to improve (as we’ll explore in a bit).

For our scaleFactor, we chose to go with the default value
of 1.10. While it is true that for a smaller value, again our
precision and recall are at their highest, it is also valid that
our tests take much longer to run, and our precision is also
a bit lower. As such a step that scales the image by 10% on
each iteration comprises an acceptable balance of time to test
and results obtained. Tables VIII, IX show our obtained results
using these values, and whilst a good effort, we can’t help but

12



Fig. 28. The True Positives, True Negatives, False Positives and False
Negatives obtained in function of the scale factor.

Fig. 29. Accuracy, Recall and Precision in function of the scale factor.

feel a bit disappointed by them.
Even though we managed to reduce the number of false

positives by quite a big amount (we have 1465 less false
positives - 40.6% decrease , but 377 less true positives -
30.9% decrease for our complex test ; for our binary test we
have 449 less true positives - an unfortunate 34.7% decrease,
but 290 less false positives - a positive 16.9% decrease),
our true positives also went down unfortunately. Our true
negatives, however, also showed a positive increase on both
tests, caused by our more strict minimum neighbours required
setting. Image 33 shows how with the right values, the same
image’s faces were now more aptly classified, whilst figure 47
shows a small sample of the results obtained in our complex
test using these set parameters.

13



Fig. 30. The True Positives, True Negatives, False Positives and False
Negatives obtained in function of the minimum neighbours variable.

Fig. 31. Accuracy, Recall and Precision in function of the minimum
neighbours variable.

TABLE VI
NUMBER OF TRUE POSITIVES, FALSE POSITIVES AND FALSE NEGATIVES

OBTAINED FOR THE TEST SET USING OPENCV’S PRETRAINED MODEL
WITH OUR FINAL CONFIGURATIONS

Test T. Pos F. Pos F. Neg T. Neg
Binary Test 395 59 9194 9603

Complex Test 875 2142 19130 -

14



TABLE VII
ACCURACY, PRECISION AND RECALL VALUES OBTAINED FOR THE TEST

SET USING OPENCV’S PRETRAINED MODEL WITH OUR FINAL
CONFIGURATIONS

Test Precision Recall Accuracy
Binary Test 0.705 0.083 0.530

Complex Test 0.257 0.06 -

Fig. 32. A sample of our results obtained in the complex test using 6
minNeighbours and 1.1 scaleFactor.

But this was all using a pretrained model given to us by
OpenCV, that was mostly trained to identify faces from a front-
facing angle, which may, in fact, be one of the root causes
leading to our accuracy being so low, as we’re not being able
to correctly detect faces that present themselves at odd angles
or that might be partially obscured, hence causing our low true
positive numbers. On the next section we’ll be exploring how
we trained our own model and what the results differences
were.

Fig. 33. The same image but now with the modified parameters. As we can
see we’re detecting all faces correctly on this particular image.

D. Training the Cascade Classifier

The results on the prior section were a good starting point,
but they were made with a model that we did not train our-
selves. Instead they utilized OpenCV’s free pre-trained model
for Frontal Face Recognition. This is a decent model, but it’s
far from perfect as it is ultimately not great at identifying
faces at an angle and struggles with faces that aren’t facing
the camera as can be seen on image 34.

Fig. 34. With the pretrained model we were able to correctly find the upright
left face, but since the other face is at a 90 degree angle we weren’t capable
of identifying it

Let us try to use our own dataset to train our model. To do
this we will be using some tools made available by OpenCV
on this link. More specifically we will be making use of
opencv traincascade and opencv createsamples tools as per
specified on the official OpenCV training documentation [19].
Utilizing our set of positive and negative train images (as
specified in Section 3.) we start off by utilizing OpenCV’s
opencv createsamples to transform our set of positive train
images (as described on our Train set’s positive images.dat
file) into a sample vector of 12000 24x24 grayscale images
of faces. Note that for this training we don’t actually need to
manually divide our Train set to create a CV set as this tool
aromatically performs a k-fold on the train samples.

Next we can actually start training our boosted cascade
of weak classifiers. This can be done using OpenCV’s
opencv traincascade by supplying it with the images we
prepared. For it to work we need to supply it with both our
positive images vector, as well as a text file containing the
relative path to every single one of our negative images. The
output will then be a fully trained model, in the form of
an XML file, that can be used to detect and localize faces
on images. The remainder of this section will be utilized to
describe the results obtained from our Cascade Classifier, with
the same parameters used in the prior section, changing the
hyper parameters of our model’s trainer.

1) Number of Stages: The first hyper parameter we’ll be
the testing, num stages, changes the number of cascade stages
(also known as steps or filters) that are to be trained. Each
stage in the trainer follows the steps:

1) First grabbing a number of positive and negative images
for the stage (on our trainers we chose to pick 1000
images from our set on each stage)

15

https://github.com/opencv/opencv/tree/master/apps


2) We take the first feature from the complete feature pool
which allows us to classify the set of positive samples
perfectly accurately.

3) Then we calculate the FA (False Alarms, or the pro-
portion of negative samples that are incorrectly passed
through) that this single feature yields on the negative
samples and check if this is below our default max false
alarm rate.

4) We iteratively add an extra feature from the feature pool
that ensures the positives are still correctly classified
and do not drop under the minimum hit rate. That also
ensure that we have a drop in the FA rate of the negative
samples.

5) We continue to add features until the maxFalseAlarm-
Rate is exceeded.

When we then move on to the nest stage we:

1) Discard all positive samples that were wrongfully clas-
sified in the previous stage and swap them out for new
images (which is why we don’t give our trainer all our
images on each stage’s training).

2) Remove all negative samples that were correctly clas-
sified and grab new windows until we have as many
positive images as we have negative.

3) Train the new stage.

Allegedly, the more stages our model has the faster our
face detection should be as there will be more filters to more
quickly coarse out less promising image regions. However, the
more the number of stages the more time it will take for our
model to actually finish training. Below, figures 35, 36 show
the time it took to train the classifiers with a varying amount of
stages and how much time it took to run the Cascade Classifier
to detect faces. Looking at image 35 it does seem like the more
stages there are the longer it will take to train our model, with
the seconds required to train increasing exponentially as the
number of stages increases. Surprisingly, however, the more
stages we had the faster our detection actually were, as seen
in image 36. This may be due to the fact that less stages
struggle to quickly discard non-promising picture areas and,
as such, have much more ground to cover, whilst more stages
imply each region passes through more smaller computations,
but overall avoid the high costs of the later classifiers and
post processing (Note that we weren’t able to try to detect the
images on the test set using 5 or less stages because the time
it took was insurmountable to our machines).

Meanwhile, in terms of results, figure 37 and 38 show
that our accuracy and precision do tend to go up the more
stages we have, however, after 25 stages we do see a drop
in accuracy, most probably caused due to the higher number
of filters starting to cause an overfit which in turn leads us to
sub-optimal results in our test. Our recall is consistently going
down, though. This may be because the more stages we have
the more strict we’re being, as we’re running each image’s
regions through more filters to coarse out the least promising,
which is causing an increase in false negatives. Please note
that, due to time constraints, we were forced to use only the

Fig. 35. The time in seconds that it took to train our model depending on
the number of stages. These values were obtained running the train script on
1 thread in a Hexa-Core processor.

Fig. 36. Time taken to detect the faces in function of the number of stages
used. The upper graph shows how much time it took to detect faces in a
single picture, whilst the lower graph shows the time taken to detect the faces
in 100 images

16



Binary Test in this section. When we showcase the results final
hyper parameter choices, however, we’ll be sure to include the
complex test alongside the binary.

After this analysis, we have determined that the optimal
number of stages would be around 27, and that is what we’ll
be using on our final model. However, since this does take
quite a lot of time to train (around 8 hours), for purposes of
seeing the impact of the next hyper-parameters we’ll be using
and comparing them using only 15 stages in order to expedite
the process (since, as proven in figure 35, this is the point
where the time it takes to train starts becoming acceptable).

2) Minimum Hit Rate: Next we have the min hit rate
which specifies the minimal desired hit rate that we want to
aim for on each stage, i.e, the minimum percentage of positive
images that are correctly classified as such (i.e, our minimum
precision on the train set). By default this is set to 0.995,
which means that we only allow 0.05% of our positive images
to be misclassified before moving on to training the next
stage. Beforehand, we presume that increasing this number
will naturally decrease the number of false negatives on our
test set hence leading us to a more accurate model, however
it will also most likely increase the time it takes to train our
classifiers since we’re aiming for a higher demand of positive
identifications. Let us see if these statements hold true by
testing the minimum hit rates of 0.95, 0.99, 0.999 and 0.9995.
Indeed figure 39 does show that the higher the minimum
hit rate the more time it will take to fully train our model.
However, it’s rather perplexing that increasing this parameter
also causes the time it takes to detect faces on our images
also increases. This, however, can be explained by the fact that
we’re training our weak classifiers to be stricter, which will
cause, even the first ones which should be more light weight,
to require more computations before discarding a region as
non-promising.

Now analyzing figures 41 and 42 we can also confirm
our assumptions. The higher our minimum hit rate, the more
true positives we’re going to be able to detect, and our false
negatives also drop considerably. However, our false positives
also seem to increase the higher our minimum hit rate, which
is leading us to a drop in precision.

By looking at our graphs, we decided to proceed with using
a minimum hit rate of around 0.99, as this seems to strike a
good balance of accuracy, precision and recall.

3) Maximum False Alarm Rate: Finally we have the
max false alarm rate, the maximum desired false alarm rate
for each stage of the classifier, i.e, the max percentage of neg-
ative images that we classified as positive on each stage. The
smaller this number the more complex each individual stage
needs to be as they will have to reach a better classification of
guessing. By default this is set to 0.5, which is just a bit better
than randomly guessing whether a non positive region indeed
contains or not a face. With this in mind we presume that
increasing this number will lead to faster training but negative
regions will propagate to later stages with a higher probability.

Fig. 37. The True Positives, True Negatives, False Positives and False
Negatives obtained in function of the number of stages used in the trainer.

17



Fig. 38. Accuracy, Recall and Precision in function of the number of stages
used in the trainer.

To test this out we chose to use max false alarm rate values
of 0.3, 0.4, 0.5 and 0.6. Figure 43 does prove that the smaller
this value is, the more it will take to train our model, and this
seems to decrease linearly the higher we set the max false
alarm to. Meanwhile figure 44 is rather perplexing. It seems
that the higher our max false alarm rate is, the more it will take
to run the test as for smaller values our model will be capable
to more quickly dispose of non-promising regions, which may
lead us to a faster discarding of images, hence the algorithm
runs faster.

Looking at figures 45 and 46 we can see that the maximum
false alarm rate does have quite the substantial impact on our
model’s performance, although perhaps not in the expected
way. Both our accuracy and precision seem to achieve optimal

Fig. 39. The time in seconds that it took to train our model depending on
the minimum hit rate. These values were obtained running the train script on
1 thread in a Hexa-Core processor.

Fig. 40. Time taken to detect the faces in function of the hit rate used. The
upper graph shows how much time it took to detect faces in a single picture,
whilst the lower graph shows the time taken to detect the faces in 100 images

18



Fig. 41. The True Positives, True Negatives, False Positives and False
Negatives obtained in function of the minimum hit rate used in the trainer.

Fig. 42. Accuracy, Recall and Precision in function of the minimum hit rate
used in the trainer.

values for the lower maximum false rates, with precision
maxing out at 0.3 and accuracy reaching its apex at 0.4. Our
recall however, seems to be the complete opposite as the higher
the maximum false alarm rate the better it gets. Looking at
our true positives this does seem to make sense. The bigger
our max false alarm rate the more lenient we are, hence we’ll
end up correctly identifying most faces, hence the proportion
of true positives found increases (i.e the recall). The caveat,
however, is that by being more lenient we also increase the
number of false positives which causes both our precision and
accuracy to go down.

A good value for our maximum false alarm rate seems
to lie between 0.35 and 0.45 since this seems to be a good
compromise between precision, recall and accuracy values. So

19



Fig. 43. The time in seconds that it took to train our model depending on the
maximum false alarm. These values were obtained running the train script on
10 threads in a Hexa-Core processor.

Fig. 44. Time taken to detect the faces in function of maximum false alarm
rate used. The upper graph shows how much time it took to detect faces in
a single picture, whilst the lower graph shows the time taken to detect the
faces in 100 images

Fig. 45. The True Positives, True Negatives, False Positives and False
Negatives obtained in function of the maximum false alarm rate used in the
trainer.

20



Fig. 46. Accuracy, Recall and Precision in function of the maximum false
alarm rate used in the trainer.

onward we’ll be utilizing 0.4 for our final model, meaning that
we discard possibly negative regions of an image with a prob-
ability slightly better than just 50/50 (i.e random guessing).

4) Final Model: For our final model we trained for our
Cascade Classifier, and after taking into account all of the
aformentioned analysis, we decided to go with 25 stages, 0.99
minimum hit rate and 0.4 maximum false alarm rate and
to see how it compares to the pre-trained model’s final results.
Tables VIII and IX are a bit underwhelming. Although its true
that we managed to obtain better results than the pretrained
model given to us by OpenCV, we didn’t managed to beat
the aforementioned value of 0.95 accuracy that the original
authors, Viola and Jones, managed to achieve. This may be due

to several factors, from our combination of hyper parameters,
to the images we used to train our algorithm with.

TABLE VIII
NUMBER OF TRUE POSITIVES, FALSE POSITIVES AND FALSE NEGATIVES
OBTAINED FOR THE TEST SET USING OUR OWN TRAINED MODEL WITH 25

STAGES, 0.99 MINHITRATE AND 0.4 MAXFALSEALARM

Test T. Pos F. Pos F. Neg T. Neg
Binary Test 1794 9 8379 9992

Complex Test 2123 2885 17882 -

TABLE IX
ACCURACY, PRECISION AND RECALL VALUES OBTAINED FOR THE TEST

SET USING OPENCV’S PRETRAINED MODEL WITH OUR FINAL
CONFIGURATIONS

Test Precision Recall Accuracy
Binary Test 0.995 0.177 0.584

Complex Test 0.424 0.11 -

What’s more astonishing, however, is the fact that in a
prior section we managed to obtain results better than these!
When we had a combination of 15 stages, 0.995 minimum
hit rate, and 0.4 max alarm rate we managed to achieve a
precision of over 0.82, recall over 0.77 and accuracy of around
0.78. A probable cause for this may be because of the way
the maximum alarm rate hyper parameter affects the manner
in which less promising regions get discarded. By default a
region that’s deemed improbable of containing a face gets
discarded with a probability with 50%, by reducing it to 40%
(with our 0.4 value) we’re being more discriminate against
these regions. By having more stages, the possibility of one
of those regions being taken out of the picture is even greater,
which may lead to an increase in false negatives, hence why
our performance may have gone down.

V. HOG WINDOWS WITH SVM CLASSIFIER

A. Introduction

Moving on from exploring our cascade classifiers and the
Viola-Jones algorithm, we would like to dedicate a section
of this report into scratching the surface of what is possible
to achieve utilizing a State Vector Machine classifier and
extracting our image’s features using HOG Windows. Our
first step into implementing this type of face detection and
localization algorithm was to apply some preprocessing to
both our train dataset. To extract our HOG features off of our
train set we first utilized OpenCV to both convert both our
positive and negative images into grayscale, and to reshape
them into 128x128 samples that can then have their HOG
Features computed.

As a reminder of how HOG works, it comes from the
base idea that we can discern patterns capable of being fed
into a classifier by extracting the distribution of directions of
gradients in the images. Basically we want to, for each pixel,
see how it compares in terms of brightness to it’s neighbours.
This works because objects tend to be affected by light in

21



Fig. 47. A sample of our results obtained in the complex test using our own
model.

similar ways. For faces, in particular, certain features like the
eye socket region being darker than its surroundings, and the
nose bridge being brighter are some very common patterns.
The fact we look at the changes in lightning comparatively to
the image’s own pixels also allows us to theoretically identify
faces regardless of overall image brightness, since as long
as the patterns are kept we’ll still be able to detect their
presence. Figure 48 shows, for a picture of a face, how its
corresponding gradients seem to almost act as a bezel around
the main features. We can clearly see how we get rid of most
information but the base feature outlines, such as the face
outline, the eyes, nose, and so on.

Fig. 48. A side by side comparison of a normal image and its computed
gradients

After we get the gradients we can compute the so called
History of Oriented Gradients. We do these because gra-
dients themselves give us too much unnecessary information
that would end up increasing the computations needed to use
them as our patterns. What we want isn’t to know whether

a pixel is brighter or not than its neighbours, but the overall
direction in which light seems to be moving in the picture.
The base form we achieve this is by recurring to Skimage’s
feature.hog method. What this does is divide the image into
several sections of 16x16 pixels (hence why we chose to have
our samples be of 128x128, so that we could divide them
into 8 clean regions). For each of these sections we count
how many gradient points in each direction there are. That
is, we count how many max gradients we have going up,
down, left, right, up right, down right, up left and down left.
We can then use this information to build a histogram of
oriented gradients in order to compute which direction has
the most gradients. Knowing this we can then replace that
region with its its common gradient direction (i.e, change the
pixels in that area so that we have the max gradients going in
the corresponding cardinal direction). Figure 49 shows what
the HOG representation of an image might look like. Note,
however, that this image has not been resized, unlike our
train set, and as such we aim to simply provide a visual
representation of what the HOG features look like, and how
they can capture an object’s patterns. In this particular case
we can clearly identify patterns such as the eyes, the outline
of the nose and mouth, and so on.

Fig. 49. A side by side comparison of a normal image and its HOG
visualization

The feature.hog method returns both a visualization of the
image’s HOG counterpart, which can be used for display
purposes, as has been done in figure 49, but also a vector of the
HOG features that we can then supply to our classifier. In our
case, the classifier is going to consist of a simple State Vector
Machine Classifier implemented using the Sklearn library. For
purposes of testing we’ll be trying out both a normal SVC,
as well as a Linear SVC, to which we’ll be supplying our
set of positive and negative image’s HOG features, obviously
shuffled. It should be noted that once again we do not require
to give our SVMs a specific CV set, as the library itself takes
care of performing a K-Fold on our Train set in order to create
it.

B. SVC

We started off by creating a model using Sklearn’s SVC
class. This implementation of a Support Vector Classifier is

22



a rather simple one and it aims to to basically fit the data
we provide, and return a ”best fit” plane that divides our data
by their categorization, i.e whether they have a face (1) or
they don’t (0). After we get this plane (i.e the model has been
trained) we can feed it some features (in our case, our test
image’s HOG feature vector) and the classifier will attempt to
predict the image’s class (which in our case can either be 0
or 1, hence why the problem of face detection is technically
one of binary classification).

By default, our SVC implementation will be using the
Squared Hinge Loss Function, a squared variant of the
Hinge loss function which is considered to be the standard
SVM loss function. One of the main hyper parameters that
can be changed in this classifier is its C parameter. By
default this value is set to one, and the higher we set it,
the weaker the regularization strength will be. We started off
by, obviously, getting the HOG features of all of our 12000
positive and 12000 negative images, classifying them as such
(with positives being labeled as 1 and negatives as 0), and
then shuffling the data. Afterwards we fed this data directly to
our SVC. Note that we don’t actually have to create a CV set
ourselves as, using our train data, the sklearn::SVC module
will automatically create a 5-fold on it. We then fit our SVC
module to our train data and tested for several possible C
values (1.0, 2.0, 4.0, 8.0), and ascertained, using Sklearn’s
best params method, that we had our best results for a C of
4.0.

After this we did some small adaptations to our Binary
Test since we had to convert and compute the test image’s
HOG features in order to try to classify them. We also had
to create a Sliding Window function that would create a
window, the size of our samples (128x128) and go through
the entire image (with a stride of 2 pixels) to try to find a face
in. Unfortunately we were incapable of using our Complex
Test due to the fact that, when detecting faces using the
sliding window, our algorithm will find the same face multiple
times and draw multiple bounding boxes surrounding the same
face (due to the our small stride value, which was, however,
necessary). Normally, and this is what happens with algorithms
like OpenCV’s detectMultiScale, if multiple bounding boxes
are around a face, they get merged into a single one, and as a
matter of fact, for a face to be confirmed as a face it needs to
have a minimum number of neighbouring boxes around it. Due
to time constraints we weren’t able to perform this adjustment,
and as such, when our window slides through a face it will
create multiple boxes around it, rendering the Complex Test
unusable.

Tables X and XI show that this methodology can produce
results that are nothing short of astonishing. Despite the fact
that the process of training and testing do take a while to
conclude, since having to compute each image’s HOG features
and having to use a sliding window to walk through the test
images does take a while (in total it took us 265.567 seconds
to run our binary test), the train time was still much much
smaller than our Cascade Classifier’s models training, and the
test times weren’t too bad, being on par with some of the

Cascade Classifier’s models tests. The fact we got an accuracy,
precision and recall values that are all over 95% is the truly
remarkable thing to notice.

TABLE X
NUMBER OF TRUE POSITIVES, FALSE POSITIVES AND FALSE NEGATIVES

OBTAINED FOR THE SVC HOG FEATURE CLASSIFIER

Test T. Pos F. Pos F. Neg T. Neg
Binary Test 9587 229 409 9772

TABLE XI
ACCURACY, PRECISION AND RECALL VALUES OBTAINED FOR THE TEST

SET FOR THE SVC HOG FEATURE CLASSIFIER

Set Precision Recall Accuracy
CV Set - - 0.974

Binary Test 0.976 0.959 0.968

C. Linear SVC

Both SVC and Linear SVC perform in similar ways, they’re
both Support Vector Classifiers after all. But allegedly the
SVC has a ”fit time that scales at least quadratically with the
number of samples” [26], making it impractical when we have
a lot of train samples. As such we thought it would be wise,
since we have around 20000 total samples, to also test out the
Linear SVC module from Sklearn which is similar to SVC but
with the parameter kernel (one of SVC’s possible parameters)
set to linear and implemented in a way that grants greater
flexibility and scalability for a larger number of samples.

We gave our Linear SVC the same loss function and messed
around with the C parameter in the exact same way as we did
with the regular SVC. As we can see in table XII the Linear
SVC manages to finish training 8 times faster than our normal
SVC, which does make point as to why it should be used.

TABLE XII
TIME TAKEN (IN SECONDS) TO FIT AND TEST OUR MODELS

SVM Train Time (s) Test Time (s)
SVC 96.77 265.567

Linear SVC 12.45 214.641

Despite the faster training and testing times, however, the
Linear SVC is incapable of producing as good results as our
normal SVC. Looking at tables XIII and XIV all of our results
went down comparatively to the ones presented in the prior
sub-section, with the most notable change being the fact that
we have way more false negatives. This was to be expected
as the Linear SVC produces a much simpler fit in comparison
to the normal SVC.

VI. MTCNN

All the latest improvements in the face detection problem
seem to be revolving around an implementation of multi-task
cascaded neural network, an MTCNN. So we thought it’d be
fitting to check the results the basic face detection algorithm

23



TABLE XIII
NUMBER OF TRUE POSITIVES, FALSE POSITIVES AND FALSE NEGATIVES

OBTAINED FOR THE LINEAR SVC HOG FEATURE CLASSIFIER

Test T. Pos F. Pos F. Neg T. Neg
Binary Test 8642 450 1354 9551

TABLE XIV
ACCURACY, PRECISION AND RECALL VALUES OBTAINED FOR THE TEST

SET FOR THE LINEAR SVC HOG FEATURE CLASSIFIER

Set Precision Recall Accuracy
CV Set - - 0.925

Binary Test 0.951 0.864 0.901

could perform. For this, we used the python module MTCNN
[24], using the default settings and training weights.

After analysing the implementation present in the GitHub
repository [25], the MTCNN is structured with three different
neural networks, which with their specific function [27], as
can be seen in the Figure 51.
• First, one NN, composed of four convolutional layers

with PReLu function between each layer, that would
recreate the image on different sizes and create image
sections of 12x12 to serve as input, the output will discard
any low confidence kernels and return the most likely to
have faces.

• Second, another NN, with two convolutional layers, one
flat layer and three dense layers, the output of these will
be the same as the first NN; however, for better results,
a bit of preprocessing is done to the images, i.e. add
padding to be a 24x24 image, and normalize all values
to be in a -1 to 1 range

• Third, the last NN is composed of four convolutional
layers, and four dense layers, with a softmax activation
function near the end; it will resize the boxes to a 48x48
picture and return the final values for the face detection
of the image.

Fig. 50. Structure of an MTCNN face detection algorithm

The return values of the face detection isn’t just coordinates
and dimensions of the bounding box, but also a list of key
points in the face, i.e. nose, eyes and corners of the mouth,
and confidence level the model has for the face in the picture,
as can be seen in Fig. 51. In these tests, we’ve only been
checking for the bounding box they create, not the rest of the
features, but it is interesting to note that the model is prepared
to return other important features.

Fig. 51. Results of the MTCNN face detection algorithm

To test the model, we used both the complex tests, and
the simple binary tests. The results of both tests are shown
in the tables XV, XVI. It’s important noting that it only takes
330.16s to process all images on the Complex Test, with good
precision rounding at 86%; as for the Binary test, it only took
334.68s to process and get quite results, with an accuracy of
around 84% and near 100% precision.

TABLE XV
NUMBER OF TRUE POSITIVES, FALSE POSITIVES AND FALSE NEGATIVES

OBTAINED FOR THE TEST SET USING MTCNN WITH THE DEFAULT
WEIGHTS

Test T. Pos F. Pos F. Neg T. Neg
Binary Test 6874 39 3128 9964

Complex Test 7069 1128 12936 -

TABLE XVI
ACCURACY, PRECISION AND RECALL VALUES OBTAINED FOR THE TEST

SET USING OPENCV’S PRETRAINED MODEL WITH OUR FINAL
CONFIGURATIONS

Test Precision Recall Accuracy
Binary Test 0.994 0.687 0.842

Complex Test 0.862 0.353 -

These results mean that the model is actually quite good in
terms of performance, as it didn’t need any pre-processing for
the images, and it could quite quickly detect images. It also
showed that it may not take the risk of detecting faces, but the
faces it detects can be trusted to be correct.

VII. FINAL CONCLUSIONS AND ABOUT FUTURE
IMPROVEMENTS

In this report we have talked at length about the algorithms
we have implemented, how they work and the results each
model has produced.

We have seen that the cascade classifier had the worse re-
sults in terms of accuracy, recall and precision: our best model
reached some rather underwhelming results, although its true
that we did manage to do better than the pretrained model; this
makes sense considering it’s the oldest algorithm we studied,
being created in the 2000’s, after which a lot of technical

24



and engineering breakthroughs have been achieved. The most
egregious fact about it is that it takes a lot of computational
resources to train and passing all images through several weak
classifiers also brings the test time down.

We have also seen that the HOG processing with an SVM
reached some pretty high scores in terms of precision and
recall, but fails in trying to identify faces in a regular photo,
i.e. while it is pretty good at telling whether the picture its
looking at is or isn’t a life, it can’t locate the face itself. For
that, we had to use a sliding window approach, which can be
pretty taxing to the computer itself. In our point of view, a very
good model could be made by joining the YOLO algorithm,
having a neural network that will divide the image in various
regions, with the HOG algorithm to classify does regions.

Finally, we have studied what is now the basics for any
model for face detection, an MTCNN algorithm. While the
values in the binary test didn’t reach HOG’s, it was the best
model in terms of performance and getting results that we
have implemented, reaching a precision of 86% while only
taking slightly more than five minutes in our machines. The
algorithm itself was implemented in 2016, and since then a lot
of different variations have been implemented, e.g. Faceness
Net which uses these types of models on facial features to
detect faces.

REFERENCES

[1] Jason Brownlee, ”How to Perform Face Detection with Deep Learning”,
2019

[2] Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik, Rich feature
hierarchies for accurate object detection and semantic segmentation, 2014

[3] Haoxiang Li, Zhe Lin, Xiaohui Shen, Jonathan Brandt, Gang Hua, A
Convolutional Neural Network Cascade for Face Detection, 2015

[4] Maël Fabien, A guide to Face Detection in Python, 2019
[5] Shuo Yang, Ping Luo, Chen Change Loy, and Xiaoou Tang, Faceness-Net:

Face Detection through Deep Facial Part Responses, 2017
[6] Adam Geitgey, Machine Learning is Fun! Part 4: Modern Face Recogni-

tion with Deep Learning, 2016
[7] Chi-Feng Wang, How Does A Face Detection Program Work? (Using

Neural Networks), 2018
[8] Ming-Hsuan Yang, Facial Recognition Using Kernel Methods, 2018
[9] S.Kevin Zhou, Integral Images, 2016
[10] Yuanshen Zhao, Three Types of Haar-like features
[11] Kaiqi Cen, Study of Viola-Jones Real Time Face Detector
[12] Petia Georgieva, Deep Learning Lecture: Object Identification
[13] Akash Desarda, Understanding AdaBoost, 2019
[14] Marek Kraft, 2017 Formation of the histogram of oriented gradients

descriptor
[15] Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, Yu Qiao, 2016 Joint

Face Detection and Alignment using Multi-task Cascaded Convolutional
Networks

[16] Shuo Yang , 2015 WIDER FACE: A Face Detection Benchmark
[17] Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi, 2016 You

Only Look Once: Unified, Real-Time Object Detection
[18] OpenCV Team, Cascade Classifier
[19] OpenCV Team, Cascade Classifier Training
[20] Manik Galkissa, 2017 Training SVM classifier with HOG features
[21] Manik Galkissa, 2017 Training SVM classifier with HOG features
[22] Neeraj Dixit, 2017 object-detection-with-svm-and-opencv
[23] Jake VanderPlas, 2016 Python Data Science Handbook - Application: A

Face Detection Pipeline
[24] Iván de Paz Centeno, MTCNN 0.1.0
[25] Iván de Paz Centeno, 2020 MTCNN Face Detection GitHub Repository
[26] SKLearn Team, SVC
[27] Chi-Feng Wang, 2018 How Does A Face Detection Program Work?

(Using Neural Networks)
[28] Arnaud Rougetet, 2019 Datasets of pictures of natural landscapes

ADDENDUM

A. Division of labor

For this work we met online via tools such as Jitsy and
Discord. Both students collaborated an equal amount of work
hours developing all algorithms and analyzing every result in
tandem.
Diogo Silva - 50%
Pedro Oliveira - 50%

25

https://machinelearningmastery.com/how-to-perform-face-detection-with-classical-and-deep-learning-methods-in-python-with-keras/
https://arxiv.org/pdf/1311.2524.pdf
https://arxiv.org/pdf/1311.2524.pdf
http://openaccess.thecvf.com/content_cvpr_2015/papers/Li_A_Convolutional_Neural_2015_CVPR_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2015/papers/Li_A_Convolutional_Neural_2015_CVPR_paper.pdf
https://towardsdatascience.com/a-guide-to-face-detection-in-python-3eab0f6b9fc1
https://arxiv.org/pdf/1701.08393.pdf
https://arxiv.org/pdf/1701.08393.pdf
https://medium.com/@ageitgey/machine-learning-is-fun-part-4-modern-face-recognition-with-deep-learning-c3cffc121d78
https://medium.com/@ageitgey/machine-learning-is-fun-part-4-modern-face-recognition-with-deep-learning-c3cffc121d78
https://towardsdatascience.com/how-does-a-face-detection-program-work-using-neural-networks-17896df8e6ff
https://towardsdatascience.com/how-does-a-face-detection-program-work-using-neural-networks-17896df8e6ff
https://faculty.ucmerced.edu/mhyang/papers/nips01.pdf
https://www.sciencedirect.com/topics/computer-science/integral-image
https://www.researchgate.net/figure/e-Three-types-of-Haar-like-features-a-A-type-of-Haar-like-feature-reflecting-edge_fig4_303916916
https://web.stanford.edu/class/cs231a/prev_projects_2016/cs231a_final_report.pdf
https://elearning.ua.pt/pluginfile.php/2311681/mod_resource/content/3/L12.pdf
https://towardsdatascience.com/understanding-adaboost-2f94f22d5bfe
https://www.researchgate.net/figure/Formation-of-the-histogram-of-oriented-gradients-descriptor_fig1_318134187
https://www.researchgate.net/figure/Formation-of-the-histogram-of-oriented-gradients-descriptor_fig1_318134187
https://arxiv.org/abs/1604.02878
https://arxiv.org/abs/1604.02878
https://arxiv.org/abs/1604.02878
http://shuoyang1213.me/WIDERFACE/
https://arxiv.org/pdf/1506.02640.pdf
https://arxiv.org/pdf/1506.02640.pdf
https://docs.opencv.org/master/db/d28/tutorial_cascade_classifier.html
https://docs.opencv.org/master/dc/d88/tutorial_traincascade.html
https://www.kaggle.com/manikg/training-svm-classifier-with-hog-features
https://www.kaggle.com/manikg/training-svm-classifier-with-hog-features
https://github.com/neerajdixit/object-detection-with-svm-and-opencv
https://www.oreilly.com/library/view/python-data-science/9781491912126/
https://www.oreilly.com/library/view/python-data-science/9781491912126/
https://pypi.org/project/mtcnn/
https://github.com/ipazc/mtcnn
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://towardsdatascience.com/how-does-a-face-detection-program-work-using-neural-networks-17896df8e6ff
https://towardsdatascience.com/how-does-a-face-detection-program-work-using-neural-networks-17896df8e6ff
https://www.kaggle.com/arnaud58/landscape-pictures

	Introduction
	Prior work done on the subject
	Cascade Classifiers
	Haar Feature Selection
	Integral Image Conversion
	AdaBoost Training
	Cascading Classifier

	Object Detection with YOLO
	Regions with CNN
	HOG Windows
	MTCNN
	Faceness Net: Face Detection through Facial Features

	Data-set Analysis
	Data-set description
	Statistical analysis
	General Preparation and Data Pre-Processing

	Cascade Classifiers
	Introduction
	OpenCV Implementation
	Using a pre-trained model
	Training the Cascade Classifier
	Number of Stages
	Minimum Hit Rate
	Maximum False Alarm Rate
	Final Model


	HOG Windows with SVM Classifier
	Introduction
	SVC
	Linear SVC

	MTCNN
	Final Conclusions and About Future Improvements
	References
	Division of labor


