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Abstract—Style and emotional expressiveness are essential
aspects of virtual character computer animation. For a virtual
character to display different emotions, motion capture data
conveying each desired style has to be recorded, even if the
baseline motion is the same. Animators then have to refine and
conjoin each recording in order to create the final animations
making it a timely and costly process. Although there have
been efforts made into the automatic generation of motions, the
problem persists that, for each new desired emotion, reference
data displaying said emotion has to be readily available and a new
motion has to be learned from scratch. By combining Machine
Learning with Emotion Analysis - in particular Laban Movement
Analysis and the Pleasure, Arousal, Dominance Emotional State
Model - we have developed a system that is capable of not only
identifying the perceived emotion of locomotion animations but
that also allows users to alter the character’s expressed emotion
in real time and without the need of additional data.

Index Terms—computer animation, machine learning, senti-
ment analysis, motion synthesis

I. INTRODUCTION

Enabling a virtual character to convey different emotions is
paramount to making that character feel realistic, believable
and impactful. Animators are tasked, not only with creating
the character’s baseline animation, but also tweaking its body
language to make it able to express different emotional states.
The problem then lies in the fact that, should animators want
their character to convey different emotions, they would need
to record actors portraying the same motion in all desired
emotions. For example, if an animator wants a character to
walk sadly and happily, they need to gather mocap data of
the same walking animation but with the actor conveying
these emotions. They then need to generate an entirely new
animation for each emotion, be it through manual computer
animation, or through automatic motion learning systems [4],
[6]. This process gets repeated for every different emotion.

We propose a novel solution in the form of a tool, capable
of both emotional discernment and motion generation through
the combination of Machine Learning (ML), the Pleasure,
Arousal, Dominance Emotional Model (PAD) [5] and Laban
Movement Analysis (LMA) [2]. The developed Emotionally
Expressive Motion Controller (EEMC) framework, shown in
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Fig. 1. A baseline motion (right) and a physics-enabled policy-controlled
character (left) whose movement has been altered to showcase “Sadness”.

Figure 1 focuses on locomotive motions and allows users to
edit the virtual character’s expressed style and emotion in real-
time, any number of times, without slowing down or stopping
the animation and without the need for any additional mocap
data or motion learning training. Moreover, our system works
not only with Kinematic mocap data but also automatically
generated Physics-Enabled Policy based controllers [4].

II. EMOTIONALLY EXPRESSIVE MOTION CONTROLLER

The EEMC system can be subdivided into several core sub
modules. Figure 2 illustrates the system’s overall architecture.
At the core lies a character controller loaded with the baseline
animation. This controller can either be Kinematic, driven
directly by mocap, or a learned Policy-Based Physics-Enabled.
A dataset of 78551 LMA Feature sets ,labelled according to
their emotion’s PAD coordinates [3], was used to train our
models. Each feature set was composed of 25 LMA Features
from the Body, Shape and Effort LMA Categories such as
“Max Hand Distance”, “Feet Speed” and “Body Volume”.

A. Emotional Discernment

To classify the motion’s perceived emotion a set of three
Gradient Tree Boosting Regressors were trained to map our
set of 25 LMA Features into each PAD coordinates. The
LMA Feature dataset was first standardized and then split
into a train/validation (80%) and test set (20%). All features
extracted from the same animation were either placed into
the train or test set. Hyper parameter tuning was done for
each regressor using Random Search 10-Fold Cross Validation.
The final models managed to a Mean Absolute Error (MAE)
of 0.02, 0.06 and 0.03 using the Test set for the Pleasure,



Fig. 2. Emotional Classification uses LMA Features as input to a set of Gradient Tree Boosting Regressors to output the animation’s current PAD coordinates.
Motion Synthesis receives new PAD coordinates, generates LMA Features, and uses Heuristic Rules and Inverse Kinematics to output a new pose.

Arousal and Dominance coordinates, which corresponds to an
error of under 5% of the total value spectrum ([−1.0, 1.0]).
Using the trained predictors it is then possible to identify
a given motion’s perceived emotion in real time. During an
animation’s playtime LMA Features are extracted at every
keyframe. After a list of 10 LMA Feature sets has been stored
a new multithreaded process is started. This process uses the
predictors to compute the PAD coordinates for each of the sets.
Each coordinate’s predictions is then averaged and output.

B. Motion Synthesis
The first step of motion synthesis is generating a new set of

LMA Features for the new desired PAD coordinates. To do so,
an Autoencoder was created to convert the 25 LMA Features
into a 5 dimensional Latent Feature space and vice-versa. This
was done to decrease the overall complexity of the PAD-
LMA mapping problem [9]. A set of 5 Gradient Tree Boosting
regressors was then trained to map PAD coordinates into each
of these features. After training, this methodology achieved
an overall MAE of 0.19 between the predicted coordinates of
the generated LMA Feature set and the original ones. Given a
new set of desired PAD coordinates it is possible to synthesize
and apply motion changes to the character in real time. A
set of 6 Heuristic Rules was designed, each responsible for
tweaking a core joint - Hips, Chest, Hands, Elbows, Feet and
Neck. Changing upper body joints was the main focus as
these tend to have the most impact on the conveyed emotion
[1]. Each of these rules works by taking into account the
current position or rotation of the joint its trying to change
and one or more associated coefficients. Whenever a new set
of PAD coordinates is provided, new values for our set of LMA
Features are created. These generated LMA Features. together
with the animation’s recorded LMA features, are utilized to
compute the coefficients used in our heuristic rules. Each rule
is associated with a different subset of LMA Features and
its associated coefficients are computed by finding the value
that minimizes the distance between the corresponding subset
of recorded and generated LMA features. All coefficients are
initialized at 1.0 and are minimized using Powell’s method
[7]. Afterwards, the system then synthesizes the changes to the
pose necessary to convey the desired emotion. These changes
are then handed to an Inverse Kinematics Solver to compute
the character’s new pose at any given frame.

III. RESULTS & CONCLUSION

Two sets of user tests were conducted to validate the
EEMC system’s synthesis emotional quality, when compared

to reference mocap animations. Each test counted with the
collaboration of 40 anonymous paid participants. The first task
- “Emotional Identification” - had participants view a clip of
an animation - be it synthesized or not - and select from a list
of preset emotions, which they thought was most indicative of
the character’s emotion. The second task - “Primed Emotional
Agreement” - was used because certain emotions have intrinsic
ambiguity when lacking context which might influence the
results of first test [8]. This test showed participants a clip and
told them what emotion the character was trying to express.
They were then asked to rate how much they agreed with that
statement.

Through these tasks we were able to ascertain that, although
there was statistically significant differences between the an-
swers provided depending on whether the clip was synthesized
or not (p > 0.05) for some emotions, most of them managed to
blend seamlessly with the reference clips. Overall, generated
emotions managed to be easily identified by the participants
on the first task, and rate highly on the agreeing scale on
the second, therefore proving the effectiveness of the EEMC
system for altering a baseline motion into conveying different
emotions.
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