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1 DATA PROFILING

In this section we will be looking at each of our two datasets separately and analyzing factors about their records, such
as dimensionality distribution, granularity and sparsity.

Firstly the Heart Failure Prediction Dataset contains data pertaining to the prediction of the lethality of a cardiac
arrest given several factors[1]. Within this dataset we have 299 different records and 13 variables, out of which the last
- DEATH_EVENT - is our Target Variable. Disregarding the target, we are presented with a 24.92 records to variable
ratio which is acceptable. Furthermore we observed that all of our variables are numeric, being either float64 or int64.
Additionally we also verified that none of these variables had any missing values. Looking at our variable’s values we
noticed that some of them only assumed two unique values - 0 and 1 - and as such should be considered binary rather
than numeric. Figure 1 shows us each of our variable’s distributions of values and, as can be seen, all of our numeric
variables follow a Gaussian distribution, except for time, which presents a more complex multi-model distribution.
We also analyzed each of our variables mean, standard deviation, minimum and max values, which led us to some
conclusions in regards to the presence of outliers in variables like creatinine which has a max value that is much larger
than the mean. In terms of feature variance, we noted that there were 4 in particular that varied very little in comparison
to the others - creatinine, platelets, serum_creatinine and serum_sodium. This comparative analysis required us to first
scale our data, a step that will be further explained in the next section. Figure 2 allows us to visualize the presence of
outliers in our non-binary variables.
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Fig. 1. Data distribution per variable.

Fig. 2. Boxplots of the distribution of each numeric (non-binary) variable.

Finally, in terms of correlation between variables we noted that no two variables were ever too highly dependent, as
seen in Figure 3. The highest relation we found was of 0.45 between sex and smoking, but even that was too low a
value to be considerable. Taking into account we do not have any correlation coefficients equal to 0 we can assume that
our dataset is sufficient to cover our domain. Interestingly we also noted that some variables correlate very little to our
target variable.

Fig. 3. Correlation Matrix showing us the sample correlation coefficient between any two variables.

The second dataset - QSAR Oral Toxicity - consists in an agglomerate of molecular fingerprints used to classify
chemicals as either toxic or nontoxic. This dataset consists in 8992 different records, each with 1025 variables (out of
which the last one is the Target Variable). All variables are numeric, but possess only 2 different unique values and as
such, can be considered binary, in exception to the last one which is a string either "positive" or "negative".Our ratio
between number of records and number of variables is well over 1 (8.78) and as such, if our data were to not cover
the domain, it would not be due to a lack of records. We also verified that there were no missing values present. This
amount of data made the dataset hard to deal with, both computationally and in terms of analysis and as such, we
devised a way to make our data easier to handle, without losing any information. Considering we had 1024 different
variables, plus a target variable, what we did was concatenate each group of 32 variables, which we called bits, into a
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new variable, which we called word. This method generated 32 words of 32 bits each. The last 33rd variable became
our target variable and it’s value remained unchanged. With this we were able to more easily analyze factors such as
sparsity simply by generating the correlation matrix between each of our 32 words and our target variable. We then
decided that if any of the words had a correlation over 0.95 we would analyze the correlation between those two words’
bits individually but this was never the case. Since no correlation coefficients were equal to 0 we can also assume we
have sufficient coverage of our domain. With our variables being binary we obviously have no outliers, and in terms of
variance we noted that certain variables varied very little.

2 DATA PREPARATION

Several steps of data processing were conducted on both of our datasets. Figure 4 showcases the basic pipeline we put
our datasets through, but note that not all of those steps were applied to both datasets (for example, applying scaling to
our QSAR Dataset, which is composed exclusively of binary values wouldn’t make sense) and we have a plethora of
versions of our datasets with several possible combinations of each of these steps.

Fig. 4. The Data Processing/Preparation pipeline.

Firstly, Scaling was only applied to our Heart Failure Dataset for the reasons previously stated. We generated both
normalized and standardized versions. In general standardization produces a more versatile dataset, but some of the
techniques that we wanted to apply would not allow for negative values, and as such, it was convenient for us to store
both versions.

Then we tried reducing the complexity of both our datasets through Feature Selection. We first started by analyzing
the variance of each variable to see if any variable could be removed due to low variance and indeed found out that in
the QSAR Dataset quite a lot of the 1024 variables had variance rates under 0.025 so immediately we created a new
dataset without them. Note that with every feature selection technique applied to our base or scaled datasets, a new one
was stored. We also analyzed the covariance between each of the dataset’s variables (using the Reduced32 dataset as a
stand-in for the QSAR) not only to see if we had any redundancy (of which we found none since no two variables ever
presented a high enough correlation factor) but also to observe how each variable correlated to the target. With this we
noted that some variables in the Heart Failure dataset correlated very little (under 0.0025 absolute) with the target and
as such, we stored a new dataset without them. Another form of feature selection utilized was Univariate Selection. We
tested a wide range of filters such as ANOVA (appropriate for the HF Dataset since it has both categorical and numeric
variables and a categorical target), CHI-Squared, Mutual Information (both good for our fully binary-categorical QSAR
Dataset) and Pearson, as well as a Wrapper method in the form of Recursive Feature Elimination (using a Linear SVR)
and an embedded method (methods that use algorithms with built-in feature selection methods) called Lasso (which is
allegedly really good for when you have both categorical and numeric features [3]). Additionally we also performed
Feature Selection via mixing, i.e, we took the results of all of these univariate methods and kept only the features
that got selected by 4 or more of them, as seen in Figure 5. Finally we performed feature selection through Feature
Importance, an inbuilt class that comes with Tree Based Classifiers that gives each of our features a score that is
higher the more relevant the feature is to our target [4].

In terms of Feature Generation, we had technically already done it for the QSAR Dataset when we created our
Reduced32 Dataset. As for our Heart Failure Dataset we noticed, when doing the previous feature selections, that
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Fig. 5. Which variables each of the different Univariate Selection techniques decided to keep.

most of our methodologies would discard the variables diabetes, high_blood_pressure, anaemia and smoking. These
variables on their own seemed to have little impact on the mortality of a heart attack, however they still do correspond
to an elevated risk of mortality and simply dismissing them might lead us to lose important information. As such we
decided to create a new variable - elevated_risk. This categorical variable is set to True when a minimum of 3 out of 4
of those factors are true. We hope that with this new variable we can still weigh in the influence of these variables, not
individually, but with their accumulated risk.

Since none of our datasets had missing values we did not perform missing value imputation. We did still, however,
have to treat the outliers present in the HF Dataset. We accomplished this with two different techniques. The first was
Trimming which simply removes records from the dataset that are identified as being outliers, which were identified
by computing either the z-score - the signed number of standard deviations by which the record’s variable’s value is
above its mean - or IQR - a measure of statistical dispersion, being equal to the difference between the upper and lower
quartiles of value distribution. The second, Winsorization, does not actually remove records, and instead changes the
values of outliers with the largest or smallest value observed that are not considered outliers.

Finally, we applied Balancing to our datasets. We tested balancing with undersampling, oversampling and
SMOTE applied to both our datasets plus the Reduced32. We decided to store only the values of SMOTE since it allows
us to synthesize new values without merely duplicating (oversampling) therefore balancing the data without having to
remove records (undersampling). Figure 6 shows us the result of this transformation on our two datasets.

Fig. 6. Graphs showing the balancing of our HF dataset (left) and QSAR dataset (right), including a graph showing the balanced
number of records of each of the target variables values using several balancing techniques.

Lastly, we performed Feature Extraction through Principal Component Analysis. This was done using three
variants of PCA: Linear Dimensionality Reduction using Singular Value Decomposition (SVD), Kernel PCA,
which consists of non-linear dimensionality reduction through the use of Kernels and Incremental PCA, which
conceptually is very similar to PCA using SVD, but is more memory efficient and allows sparse input. By following
three different approaches we have a baseline model we can use as reference later and can have a better notion of what
type of Feature Extraction works best for our dataset. In order to select the number of components to keep, we opted to
select the minimum number of vectors that resulted in a cumulative sum of Explained Variance of at least 95% [5], as
can be seen in Figure 7.
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Fig. 7. Explained variance ratio cumulative sum in function of principal components. Scatter plot that shows the correlation between
two variables before PCA and correlation between two Principal Components after PCA.

3 CLASSIFICATION

3.1 Naïve Bayes

For theNaïve Bayesmodel, we compared the performances of three event models: Gaussian,Multinomial and Bernoulli.
We performed holdout (70% training) and K-fold (10 shuffled splits) for each of the different models, which yielded
very similar results. This process was followed for the original, unprocessed dataset and for the processed ones. Given
the high volume of resulting datasets we opted to consider only the best performing event model for comparison of
each dataset, in order to understand what type of pre-processing resulted in the most performance gain. For most
datasets, the Gaussian Naïve Bayes model results in the best accuracy, with the exception of the Standardized data.
This is not a surprising result, considering our data follows a Gaussian distribution. Looking at the precision, recall,
and confusion matrices, it can easily be inferred that the ability to recognize both true positives and negatives greatly
benefits from balancing; especially considering the difficulties the model presented in accurately predicting positive
labels, as we can see from the low Recall scores prior to this transformation. Lastly, from the histogram regarding
feature engineering, we can conclude that the pre-processing that yields the best results for this model consists of
scaling, balancing, outlier trimming with IQS and mixed feature selection. Considering the simplicity of this model, an
average of 80% accuracy was pretty acceptable. As for the QSAR Dataset, we followed a similar approach. The studied
datasets for this model were the original, balanced and both balanced and reduced. Unlike the HF dataset, for this
data we have varying performances for different models, i. e., there is not a best model for all the datasets. From the
histogram we infer that regardless of the model, there is an average of 80% accuracy for the original and balanced
datasets, however, the charts show all three models struggled to accurately label negative records, as we can see from
the low precision scores. Looking at the confusion matrices as well as precision and recall scores, we can conclude
that balancing the dataset prior to training the model has a dramatic impact on its performance, as was to be expected.
When using feature engineering, we can spot a significant increase in accuracy for the Reduced32 dataset, with over
90%. Besides this dataset, our best performance was with feature selection using Extra Tree Classifier.

Fig. 8. Side-by-side comparison of the accuracy obtained using the most relevant datasets regarding feature engineering and further
data processing for the Heart Failure dataset.

Manuscript submitted to ACM



6 Diogo Silva, Tiago Melo, and Pedro Pires

3.2 KNN

Our approach evaluated the performances of the K-Nearest Neighbors using the Manhattan, Euclidean, Chebyshev
and Jaccard distances. The followed procedure was similar for both datasets. We measured the accuracy for different
combinations of hyper-parameters. Afterwards, we selected the best-performing model and computed the aforemen-
tioned metrics. Provided that KNN uses distances, we can expect that a scaled dataset performs significantly better than
a non-processed one. Hence, for a first approach we validated the model for the original, standardized and normalized
datasets. Unlike in the previous model, we did not use our SMOTE balanced datasets nor our Windsorized datasets
since we are computing distances between values and we should maintain the proportional relationships between
them. Generally, every model’s performance seems to increase as the number of neighbors increases, regardless of the
distance metric used, but it seems to rapidly reach a plateau. As expected, processing the data a priori to training the
model has a great impact on its performance: both scaled datasets present a 10% accuracy increase in comparison to the
original. Additionally, we also noted that this pre-processing also benefitted the model’s ability to accurately predict
positive records, as we can see from the improved Precision scores in the second and third bar charts 9. Nevertheless,
the model still struggles in labelling such cases for all the datasets, as can be seen through the confusion matrices, and
in none of the cases does it display a great accuracy. Similarly to previous results, engineered datasets displayed far
better overall performance, with the highest accuracy reaching over 90%. Such was achieved using the dataset with
standardization, trimming outliers using IQS and feature selection using importance. For the original Oral Toxicity
Dataset, the obtained results varied slightly: instead of a rapid increase towards a plateau in function of the number
of neighbors, the chart suggests the performance does not depend too much on it, as the accuracy is stable for every
distance metric. On the other hand, the feature engineered datasets show a steady decrease in performance as the
number of neighbors increases, for some cases. In others, the behavior seen in the original dataset is replicated.

Fig. 9. Accuracy evolution using different metrics in function of the number of neighbors, along with performance details on the
best-performing model for each dataset: original, standardized and normalized, respectively (Top). Accuracy evolution using different
metrics in function of the number of neighbors, for the original and feature engineered datasets (Bottom).

3.3 Decision Trees

For Decision Trees we basically did the same as for the algorithms above. For the HF dataset, first, we ran the algorithm
with the original dataset in order to obtain baseline results so that we could compare and assess how our data preparation
techniques would impact them. And even though the models did not seem to overfit, we still tested how pruning
would affect them. For the hyperparameter search we experimented with both gini and entropy and then performed
combinations of max_depth andmin_impurity_decrease parameters. For the HF original dataset, we obtained an
accuracy of 87% with both recall and precision also above 80% but the specificity only around 65%. When pruned, the
tree achieves an accuracy of 89% and all other metrics were also above 80% even though recall dropped by a bit. This
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comes from the fact that with pruning the tree does not give as many false negatives but increases the number of false
positives. Then, we tested on some of our processed datasets. The results can be seen on Fig 10. From looking at the top
5, all those datasets had balancing, scaling and some type of outlier treatment applied to them.

Fig. 10. Side-by-side comparison of the accuracy obtained using the most relevant datasets regarding feature engineering and further
data processing for the Heart Failure dataset and Decision trees models.

For the second dataset we followed the same process. With the original, results were not the best, with an accuracy
around 93% and an ever higher specificity it would seem good, but this is due to the fact that classes are really unbalanced,
since precision is only around 70% and recall even lower at 53%. When testing with pruning, the model simply classified
everything as negative. With the Reduced32 Dataset, the model trained would classify almost every point as negative,
leaving us with a recall smaller than 20%, so not a good option. For the processed datasets, balancing is the way to go.
When we applied any type of feature selection, the results were similar to the baseline with high accuracy but low
recall, even lower than with the original. But when we applied balancing to the datasets, the results were much better,
with every one of our 4 evaluation metrics being around 90%.

3.4 Random Forests

We used both Random Forests and Extremely Randomized Trees, a variant of the former that proposes lower
variance [6]. We experimented every combination of three specific hyper-parameters: the Number of Estimators id
est the number of trees in the generated forest, theMaximum Depth of each tree, and theMaximum Number of
Features to be kept, passed along as percentages. In Figure 11 we can visualize the accuracy evolution in function of
the number of estimators for different numbers of features and different maximum depths. Once again, this was done
using both a series of Holdouts (with 70% training size) and K-fold using 10 splits. From the results, we infer there is no
clear best combination of parameters for the former model. As for Extremely Randomized Trees, it is interesting to note
how the different performances stabilized around different values according to the number of features kept, suggesting
this model is more sensitive to such changes. However, much like Random Forests, the number of estimators does
not seem to have a great impact on overall model performance. Much like in previous approaches, our models were
fine-tuned, the best performing set of hyper-parameters were picked and then both variants were compared. For the HF
Dataset, we verified the best results using the standardized, RFE feature selection, IQS outlier trimming, balanced version,
resulting in a test accuracy of 92%, using a maximum tree depth of 10, 10% of the original features and 75 estimators in
the Extremely Randomized Trees variant. When tested against a wider range of pre-processed datasets, we notice
that balancing and scaling the data beforehand are possibly the most important steps for such models. We can infer this
since most of the datasets that have been through those techniques display a higher accuracy overall. As for QSAR, we
see even less variance in function of the number of estimators, as both models seem to have a stable accuracy regardless
of the combination of hyper-parameters.
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Fig. 11. Accuracy evolution in function of number of estimators for different maximum tree depths. First three correspond to Random
Forests and the latter correspond to Extremely Randomized Trees. Implemented for the Heart Failure original dataset (left), for the
QSAR Oral Toxicity original dataset (middle), and maximum accuracy obtained between both fine-tuned models (right)

3.5 Gradient Boosting

Finally, we also tried Gradient Boosting. For implementation we utilized a multi-stage additive model in which each
stage regression trees are fit on the negative gradient of the given deviance loss function. As main parameters we
have the Learning Rate - which shrinks the contribution of each tree in the classifier’s ensemble - the Number of
Estimators - The number of boosting stages to perform which should help with reducing overfitting - and theMax
Depth - Limits the number of nodes in each individual regression estimator tree. Originally, our approach was to
iteratively tweak each of these values. We started off by checking the accuracy of our estimator for a range of learning
rates, then picked the learning rate that obtained the best accuracy on our Test set and repeated the procedure for
Number of Estimators and the same for Max Depth. A possibly better approach however, rather than iteratively picking
the parameters would be to generate every possible combination between them, therefore assuring that we are getting
the best combination of Learning Rate, Number of Estimators and Max Depth rather than the best Learning Rate, best
Number of Estimators in function of the previously obtained best Learning Rate, and so on. One downside to this,
however, would be that we would have to reduce the number of values we were testing for each of our parameters, since
we would be generating many more combinations. We ran this algorithm for both our main datasets, with combinations
of pre-processing steps, having computed the best parameters for each of them using both Holdout (with 70% train size)
and K-Fold (with 10 shuffled splits). For our Heart Failure Dataset the best results obtained were for the standardized
version with importance feature selection, feature generation, outlier imputation and smote balancing as we managed to
obtain over 90% test accuracy (for both Holdout and K-Fold) with a max depth of 2, 100 estimators and a surprising
learning rate of 1. As for the QSAR Dataset our best results were with Mutual-Filter Feature Selection and SMOTE

balancing which garnered us an astonishing accuracy of over 96% for both holdout and K-fold for a learning rate of 1,
200 estimators and max depth of 6. We also ran the algorithm for our Reduced32 dataset with Chi-Filter Feature Selection

which also achieved over 95% accuracy with a max depth of 6, 300 estimators and a learning rate of 1. It should be
stated that not only was the accuracy values obtained astonishingly high, both the precision and recall associated with
those results were also high, as can be seen in Figure 12. Gradient Boosting managed to finely predict both positives
and negatives equally well. Oddly enough all of our best estimators had a learning rate close to or equal to 1 meaning
the contribution of each tree was minimal.

Fig. 12. Evaluation Metrics obtained from running GBC on a prepared Heart Failure Dataset (Left), prepared QSAR Dataset (Middle)
and prepared Reduced32 Dataset (Right)
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4 UNSUPERVISED LEARNING

4.1 Clustering

We applied 4 different clustering methodologies - K-Means, Hierarchical, Density-Based and Expectation Maxi-
mization.

Starting off with K-Means, we ran our algorithm for an increasing value of k (id est, number of centroids), drawing
for each K the scatter plot of our two first variables (originally we were drawing the scatter plots between each two
pairs of variables but this was unfeasible due to computation limitations). For each K we also calculated theMean Square

Error, and two validation metrics - Silhouette Coefficient and Davies-Bouldin Scores. We ran K-Means for a plethora of
our datasets but taking into account that K-Means uses an euclidean distance to assign values to a cluster we had some
insight that the values obtained would not be too great for either datasets since the HF Dataset contains both numerical
and binary data and the QSAR Dataset is purely binary. We also had to be careful to not use any data preparation that led
to the alteration of our record’s proportions, meaning we could not use our balanced datasets (since they used SMOTE)
nor our datasets with outlier imputation through winsorization. This concern extended to all of our Clustering methods.
Scaling was still fine, however, since all values were scaled proportionally to each other so the relation between values
was not altered. As expected the results were not too great. For our HF Dataset we never managed to break an SC

score of 0.4 and while applying feature extraction techniques to our data, the best we could ever achieve was for our
standardized dataset with RFE feature selection, outlier trimming and PCA feature extraction as seen in Figure 13, but
even still whilst our MSE was noticeably decreasing with the addition of centroids, our SC and DB scores seemed to
contradict each other since one peaked at a K of 25 (SC), the other presented better results for lower K’s (DB). The
optimal K in this situation would probably be around 17 since it seems to strike the best balance between our metrics.
This was even worse for our QSAR Dataset which presented even poorer results as seen in the same figure. Although
the DB score was pretty high, the SC never surpassed 0.15. All in all, K-Means is not too applicable to our datasets.

Fig. 13. MSE, SC and DB for Heart Failure (Left) and QSAR (Right)

When it comes toDensity basedwe ran the algorithm, forHF on the standardized one and then with the standardized
with feature selection and feature generation and outliers treatment, and then the same after PCA. For several distance
measures we did a small study to see what EPS we should use. The distances were euclidean, cityblock, chebyshev,
cosine, jaccard, hamming and gower. Gower was a test as it seems to be a really good distance to use when we do
not only have numerical variables [7]. For the standardized all of the metrics had an MSE around 0.16 and a DB score
between 1.4 for cosine and 2.5 for gower, with jaccard being the worst at 3.5. For the SC Coefficient only euclidean
chebyshev and gower had positive values, but all around 0.3, so not very good results. For the processed dataset, none
of the metrics had a positive SC Coefficient so results were not good. After PCA results were very similar. For the
QSAR dataset we did the same testing, expecting that distances for binary variables would perform better. And indeed,
while all metrics had a similar MSE around 0.9. When looking at the SC Coefficient, only the Hamming distance has a
positive value around 0.3 which is still not very good.
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For Hierarchical we applied it to the same datasets mentioned above. Then, first we do a small study to choose the
best K then test it with the aforementioned distance measures minus gower, and with complete or average linkage.
For the standardized one, with a K value of 3, the MSE was around 0.15 for complete and slightly higher for average.
Euclidean and chebyshev distances had a SB coefficient higher than 0.4 and cityblock at 0.5 for average linkage. When
testing the other two datasets, results were worse. While MSE did not really change, SC was smaller never reaching 0.3
and DB also increased. For the QSAR dataset the chosen K was also 3. While all distances have a MSE just above 0.08
only euclidean, cityblock and hamming have positive values for SC Coefficient. These three also have the lowest DB
scores at 0.5 with average linkage. In both datasets, average linkage yielded better results.

Finally for Expectation Maximization we performed a search for the optimal K value. For the Standardized dataset
as K increases, both MSE and DB decrease which seems promising but the SC coefficient never even reaches 0.2. When
applied to processed datasets, results were basically the same. For QSAR we did the same search for K values. In this
case MSE barely changed when K increased becoming only slightly smaller, also with SC lower than 0.1 and DB varying
between 3 and 4, results were rather bad.

4.2 Pattern Mining

Finally we proceeded to look for patterns in our datasets. Firstly, however, we had to deal with the fact that our HF
Dataset had numerical data, hence the need for discretization. We applied 3 types of discretization - Dummification,
Equal-Width Binning (with a number of bins equal to the number of unique values of the variable with the least
amount of unique values), and an extreme case of Equal-Frequency Binning (in which each variable had a different
number of bins equal to the number of unique values). After this was done, we tried to find patterns in our data and
then performed quality evaluation using several metrics (such as confidence, support and lift). We found a comparable
amount of patterns for all of our discretized versions of our HF Dataset, with all of them rounding around 19750 patterns
and 2976800 rules using a minimum confidence of 50%. For the QSAR Dataset we found only 56 patterns, with the only
metrics capable of finding rules being lift and conviction (of which we used a minimum of 0.5) with 96 rules found.
We also ran pattern mining on our Reduced32 Dataset which, unfortunately, was not able to find any patterns. These
values are showcased in Figure 14. All in all we verified that the number of patterns seemed to increase exponentially in
function of the given support threshold on all of our datasets. Additionally, for our HF Dataset, considering confidence
as the quality measure, average quality seems to be very similar to the best rules’, but as the Confidence threshold
increases, the average confidence drops immensely and most rules appear to be symmetric, in the sense that if A implies
B, then B most likely implies A for every A, B class in the dataset.

Fig. 14. Number of Patterns found per support and association rules quality metrics for HF (Top) and QSAR (Bottom)
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5 CONCLUSION

Throughout this project we have studied a wide range of modern techniques in the scope of Data Science and Machine
Learning. Moreover, the conducted procedure also allows us to infer what data preparation techniques yield the best
results for what models. This analysis cannot be without also considering the simplicity of model, both conceptual and
implementation-wise.

The performance of the Naïve Bayes model is extremely reliant on the assumed event model distribution, id est,
Gaussian, Multinomial or Bernoulli, each one having varying performances for distinct datasets. Additionally, this model
suggests it offers best results when the data is balanced and scaled prior to its training. Regarding KNN, as expected,
normalizing the data displays a better overall accuracy regardless of the distance metric used. All the best performing
datasets have also been scaled, leading us to believe scaling is also fundamental when employing KNN. Decision
Trees as well as Random Forests on the other hand, are far more sensitive to prior data balancing, which can be
inferred not only from the improved accuracy, but also far better recall and specificity scores. This sort of similarity
between the two models makes sense, given the latter is an ensemble of the former. Lastly, Gradient Boosting seems
to yield the best results, making stable predictions for both positive and negative records. As for Unsupervised Learning,
although our data does not lend itself too well to Clustering, we still managed to achieve some interesting results.
Moreover, in Pattern Mining we infer that the support threshold seems to be correlated with the number of patterns
found in an exponential manner and that symmetry could be found in all of the rules that displayed the highest quality.
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